52 research outputs found

    Comparative Metagenomics and Network Analyses Provide Novel Insights Into the Scope and Distribution of β-Lactamase Homologs in the Environment

    Get PDF
    The β-lactams are the largest group of clinically applied antibiotics, and resistance to these is primarily associated with β-lactamases. There is increasing understanding that these enzymes are ubiquitous in natural environments and henceforth, elucidating the global diversity, distribution, and mobility of β-lactamase-encoding genes is crucial for holistically understanding resistance to these antibiotics. In this study, we screened 232 shotgun metagenomes from ten different environments against a custom-designed β-lactamase database, and subsequently analyzed β-lactamase homologs with a suite of bioinformatic platforms including cluster and network analyses. Three interrelated β-lactamase clusters encompassed all of the human and bovine feces metagenomes, while β-lactamases from soil, freshwater, glacier, marine, and wastewater grouped within a separate “environmental” cluster that displayed high levels of inter-network connectivity. Interestingly, almost no connectivity occurred between the “feces” and “environmental” clusters. We attributed this in part to the divergence in microbial community composition (dominance of Bacteroidetes and Firmicutes vs. Proteobacteria, respectively). The β-lactamase diversity in the “environmental” cluster was significantly higher than in human and bovine feces microbiomes. Several class A, B, C, and D β-lactamase homologs (blaCTX-M, blaKPC, blaGES) were ubiquitous in the “environmental” cluster, whereas bovine and human feces metagenomes were dominated by class A (primarily cfxA) β-lactamases. Collectively, this study highlights the ubiquitous presence and broad diversity of β-lactamase gene precursors in non-clinical environments. Furthermore, it suggests that horizontal transfer of β-lactamases to human-associated bacteria may be more plausible from animals than from terrestrial and aquatic microbes, seemingly due to phylogenetic similarities

    The biochar effect: plant resistance to biotic stresses

    Get PDF
    Biochar (charcoal) is the solid co-product of pyrolysis, the thermal degradation of biomass in the absence of oxygen. Pyrolysis also yields gaseous and liquid biofuel products. There is a growing interest worldwide in the pyrolysis platform, for at least four reasons: (i) pyrolysis can be a source of renewable biofuels; (ii) many biomass waste materials can be treated by pyrolysis and thus converted into a fuel resource; (iii) long-term sequestration of carbon dioxide which originated in the atmosphere may result from adding biochar to soil; and (iv) biochar soil amendment contributes to improved soil fertility and crop productivity. Currently, however, very little biochar is utilized in agriculture, in part because its agronomic value in terms of crop response and soil health benefits have yet to be quantified, and because the mechanisms by which it improves soil fertility are poorly understood. The positive effects of biochar on crop productivity under conditions of extensive agriculture are frequently attributed to direct effects of biochar-supplied nutrients and to several other indirect effects, including increased water and nutrient retention, improvements in soil pH, increased soil cation exchange capacity, effects on P and S transformations and turnover, neutralization of phytotoxic compounds in the soil, improved soil physical properties, promotion of mycorrhizal fungi, and alteration of soil microbial populations and functions. Yet, the biochar effect is also evident under conditions of intensive production where many of these parameters are not limited. Biochar addition to soil alters microbial populations in the rhizosphere, albeit via mechanisms not yet understood, and may cause a shift towards beneficial microorganism populations that promote plant growth and resistance to biotic stresses. In addition to some scant evidence for biochar-induced plant protection against soilborne diseases, the induction of systemic resistance towards several foliar pathogens in three crop systems has been demonstrated. There are indications that biochar induces responses along both systemic acquired resistance (SAR) and induced systemic resistance (ISR) pathways, resulting in a broad spectrum controlling capacity in the canopy. This review examines the effects of biochar soil amendment on the different soil-plant-microbe interactions that may have a role in plant health. Improvement of plant responses to disease can be one of the benefits gained from applying biochar to soil

    The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – a review

    Get PDF
    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.info:eu-repo/semantics/acceptedVersio

    Microbiome and resistome profiles along a sewage-effluent-reservoir trajectory underline the role of natural attenuation in wastewater stabilization reservoirs

    Get PDF
    Antibiotic-resistant bacteria and antibiotic resistance gene (ARGs) loads dissipate through sewage treatment plants to receiving aquatic environments, but the mechanisms that mitigate the spread of these ARGs are not well understood due to the complexity of full-scale systems and the difficulty of source tracking in downstream environments. To overcome this problem, we targeted a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR), whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs and receiving aquatic ecosystems. We analyzed a large set of physicochemical measurements, concomitant with the cultivation of total and cefotaxime-resistant Escherichia coli, microbial community analyses, and quantitative PCR (qPCR)/digital droplet PCR (ddPCR) quantification of selected ARGs and mobile genetic elements (MGEs). The MABR removed most of the sewage-derived organic carbon and nitrogen, and simultaneously, E. coli, ARG, and MGE levels dropped by approximately 1.5- and 1.0-log unit mL(-1), respectively. Similar levels of E. coli, ARGs, and MGEs were removed in the reservoir, but interestingly, unlike in the MABR, the relative abundance (normalized to 16S rRNA gene-inferred total bacterial abundance) of these genes also decreased. Microbial community analyses revealed the substantial shifts in bacterial and eukaryotic community composition in the reservoir relative to the MABR. Collectively, our observations lead us to conclude that the removal of ARGs in the MABR is mainly a consequence of treatment-facilitated biomass removal, whereas in the stabilization reservoir, mitigation is linked to natural attenuation associated with ecosystem functioning, which includes abiotic parameters, and the development of native microbiomes that prevent the establishment of wastewater-derived bacteria and associated ARGs.IMPORTANCE Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs. We evaluated ARB and ARG dynamics across the raw-sewage-MABR-effluent trajectory, concomitant with evaluation of microbial community composition and physicochemical parameters, in an attempt to identify mechanisms associated with ARB and ARG dissipation. We found that removal of ARB and ARGs in the MABR was primarily associated with bacterial death or sludge removal, whereas in the reservoir it was attributed to the inability of ARBs and associated ARGs to colonize the reservoir due to a dynamic and persistent microbial community. The study demonstrates the importance of ecosystem functioning in removing microbial contaminants from wastewater. Wastewater treatment plants are sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can contaminate receiving aquatic environments and contribute to antibiotic resistance. We focused on a controlled experimental system comprising a semicommercial membrane-aerated bioreactor (MABR) that treated raw sewage, whose effluents fed a 4,500-L polypropylene basin that mimicked effluent stabilization reservoirs.info:eu-repo/semantics/acceptedVersio

    Candidate biomarkers of antibiotic resistance for the monitoring of wastewater and the downstream environment

    Get PDF
    Urban wastewater treatment plants (UWTPs) are essential for reducing the pollutants load and protecting water bodies. However, wastewater catchment areas and UWTPs emit continuously antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), with recognized impacts on the downstream environments. Recently, the European Commission recommended to monitor antibiotic resistance in UWTPs serving more than 100 000 population equivalents. Antibiotic resistance monitoring in environmental samples can be challenging. The expected complexity of these systems can jeopardize the interpretation capacity regarding, for instance, wastewater treatment efficiency, impacts of environmental contamination, or risks due to human exposure. Simplified monitoring frameworks will be essential for the successful implementation of analytical procedures, data analysis, and data sharing. This study aimed to test a set of biomarkers representative of ARG contamination, selected based on their frequent human association and, simultaneously, rare presence in pristine environments. In addition to the 16S rRNA gene, ten potential biomarkers (intI1, sul1, ermB, ermF, aph(3′’)-Ib, qacEΔ1, uidA, mefC, tetX, and crAssphage) were monitored in DNA extracts (n = 116) from raw wastewater, activated sludge, treated wastewater, and surface water (upstream and downstream of UWTPs) samples collected in the Czech Republic, Denmark, Israel, the Netherlands, and Portugal. Each biomarker was sensitive enough to measure decreases (on average by up to 2.5 log-units gene copy/mL) from raw wastewater to surface water, with variations in the same order of magnitude as for the 16S rRNA gene. The use of the 10 biomarkers allowed the typing of water samples whose origin or quality could be predicted in a blind test. The results show that, based on appropriate biomarkers, qPCR can be used for a cost-effective and technically accessible approach to monitoring wastewater and the downstream environment.info:eu-repo/semantics/publishedVersio

    Biomarkers for monitoring antibiotic resistance in aquatic environments

    Get PDF
    The occurrence of antimicrobial resistance raises concerns as a human health threat that can be propagated through the environment. Wastewater discharge into the environment is an important source for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Sewage collection and urban wastewater treatment plants (UWTPs) are major barriers that reduce environmental contamination by sewage-derived pathogens and nutrients. However, the continuous discharge of ARB and ARGs through wastewater, including when well-functioning UWTPs are available, is unavoidable. Regular and integrated antibiotic resistance monitoring in both wastewater and receiving water bodies would contribute to improve control measures. However, monitoring processes are not harmonized being the choice of suitable biomarkers a first limitation. In this study, we tested 10 selected potential antibiotic resistance biomarkers, which have been described has being associated to humans, and rare in clean environments - intI1, sul1, ermB, ermF, aph(3’’)-Ib, qacEΔ1, uidA, mefC, tetX and crAssphage. The public database MGnify (https://www.ebi.ac.uk/metagenomics/; hosted by EMBL-EBI), was screened using the filters corresponding to origin - human gut, wastewater, sewage, and fresh water. These biomarkers and the 16S rRNA gene were monitored by quantitative PCR (qPCR) tested in raw wastewater, activated sludge, treated wastewater and surface water (upstream and downstream the UWTP) samples, collected from different countries (Portugal, Czech Republic, Denmark, The Netherlands, and Israel). The abundance of the 10 potential biomarkers decreased on average by up to 2.5 log-units gene copies/mL of sample from raw wastewater to surface water, due to treatment and/or dilution in surface water. A clustering analysis of samples based on biomarkers abundance, grouped the samples according to the (waste)water type. This classification was confirmed when 12 anonymous (waste)water samples were analysed in a blind test. The tested biomarkers were observed to differentiate different types of sample, permitting the assessment of wastewater treatment efficiency or of impacts of UWTPs discharge or others in aquatic environments. The selection of suitable biomarkers that can typify different water sources and levels of ARG contamination, along with harmonized qPCR procedures, can facilitate regular and integrated legal requirements to antibiotic resistance monitoring in wastewater and related aquatic environments.info:eu-repo/semantics/publishedVersio

    Every fifth published metagenome is not available to science

    Get PDF
    Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high–impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions—a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.info:eu-repo/semantics/publishedVersio

    Antibiotics in agroecosystems: Introduction to the special section

    Get PDF
    The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years, and is a growing public health concern. While antibiotics are utilized for human medicine and agricultural practices, the majority of antibiotic use occurs in food animals where these drugs have historically been used for growth promotion, in addition to prevention and treatment of disease. The widespread use of antibiotics combined with the application of human and animal wastes to agricultural fields introduces antibiotic-related contamination into the environment. While overt toxicity in organisms directly exposed to antibiotic in agroecosystems is generally not an issue due to concentrations generally lower than therapeutic doses, the impacts of introducing antibiotic contaminants are unknown, and concerns have arisen about the health of humans, animals and ecosystems (One Health). Despite increases in research focused on the fate and occurrence of antibiotics and antibiotic resistance over the past decade, standard methodologies and practices for analyzing environmental samples are limited, and future research needs are becoming evident. To address these issues in detail, this special section was developed with a framework of five core review papers that address the (i) overall state of science of antibiotics and antibiotic resistance in agroecosystems with a causal model; (ii) chemical analysis of antibiotics in the environment; (iii) necessity for background and baseline data for studies of antibiotic resistance in agroecosystems with a decision-making tool to assist in designing research studies; as well as (iv) culture- and (v) molecular-based methods for analyzing antibiotic resistance in the environment. With a focus on the core review papers, this introduction to the special section summarizes the current state of science for analyzing antibiotics and antibiotic resistance in agroecosystems, while also discussing current knowledge gaps and future research priorities. This introduction also contains a glossary of terminologies that are commonly used throughout the special section. By defining these terminologies, it is hoped to provide a common language that clearly defines the linkages across the narratives of each paper
    corecore