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Human sewage is a major source of antibiotic resistant bacteria and antibiotic
resistance genes. Whereas in most world regions these effluents are treated
before returning to the environment, it is estimated that half of the world
population does not have access to adequate sanitation systems [1]. Even in
regions where urban wastewater treatment plants are implemented and
operating properly, it is demonstrated that antibiotic resistance emissions may
have noticeable impacts on the receiving environment [2]. Simplified and low-
cost monitoring systems might contribute to map the distribution of antibiotic
resistance genes, measure its removal during wastewater treatment, and assess
potential impacts on the receiving environment.

• Identify suitable biomarkers, whose detection and quantification might
indicate anthropogenic sources of contamination;

• Track antibiotic resistance dissemination in (waste)water.

The six putative biomarker genes had an expected variation from raw wastewater to surface water. Based on the qPCR analysis, the uidA and aph(3’’)-Ib may be the best
biomarker candidates, as presented the highest variations between raw wastewater and surface water.
The in silico analysis suggested crAssphage and aph(3'')-Ib genes as the best biomarker candidates since they were not detected in surface water metagenomes, being
frequent in wastewater metagenomes.
The selected biomarker candidates crAssphage, tetX, mefC and qacEΔ1 are currently being assessed based on qPCR analysis of the same samples.
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Figure 1. Abundance (gene copy number / mL of
sample) of the genes (16S rRNA, intI1, sul1, ermB, ermF,
aph(3’’)-Ib and uidA) in different DNA extracts from
influent (raw wastewater), sludge, effluent (treated
wastewater) and surface water.

Figure 2. Percentage of influent, sludge, effluent and
surface water metagenomes in which the putative
biomarker genes were detected based on an in silico
analysis.

Figure 3. Principal Components Analysis showing the
distribution of the influent (I), effluent (E), sludge (S) and
surface water (SW) samples, based on the quantification
by qPCR of the six putative biomarker genes (intI1, sul1,
ermB, ermF, aph(3’’)-Ib and uidA).
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