12 research outputs found

    Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities

    No full text
    Seasonal area closures of fisheries are primarily used to reduce fishing mortality on target species. In the absence of effort controls, fishing vessels displaced from a closed area will impact fish populations and the environment elsewhere. Based on the observed response of the North Sea beam trawl fleet to the closure of the "cod box" and an existing size-based model of the impacts of beam trawling, we predict the effects of seasonal area closures on benthic communities in the central North Sea. We suggest that repeated seasonal area closures would lead to a slightly more homogeneous distribution of annual trawling activity, although the distribution would remain patchy rather than random. The increased homogeneity, coupled with the displacement of trawling activity to previously unfished areas, is predicted to have slightly greater cumulative impacts on total benthic invertebrate production and lead to localized reductions in benthic biomass for several years. To ensure the effective integration of fisheries and environmental management, the wider consequences of fishery management actions should be considered a priori. Thus, when seasonal closures increase the homogeneity of overall disturbance or lead to the redistribution of trawling activity to environmentally sensitive or previously unfished areas, then effort reductions or permanent area closures should be considered as a management option. The latter would lead to a single but permanent redistribution of fishing disturbance, with lower cumulative impacts on benthic communities in the long run

    Fish abundance with no fishing: Predictions based on macroecological theory

    No full text
    1. Fishing changes the structure of fish communities and the relative impacts of fishing are assessed usefully against a baseline. A comparable baseline in all regions is fish community structure in the absence of fishing. 2. The structure of unexploited communities cannot always be predicted from historical data because fisheries exploitation usually precedes scientific investigation and non-fisheries impacts, such as climate change, modify ecosystems over time. 3. We propose a method, based on macroecological theory, to predict the abundance and size-structure of an unexploited fish community from a theoretical abundance-body mass relationship (size spectrum). 4. We apply the method in the intensively fished North Sea and compare the predicted structure of the unexploited fish community with contemporary community data. 5. We suggest that the current biomass of large fishes weighing 4-16 kg and 16-66 kg, respectively, is 97.4% and 99.2% lower than in the absence of fisheries exploitation. The results suggest that depletion of large fishes due to fisheries exploitation exceeds that described in many short-term studies. 6. Biomass of the contemporary North Sea fish community (defined as all fishes with body mass 64 g-66 kg) is 38% lower than predicted in the absence of exploitation, while the mean turnover time is almost twice as fast (falls from 3.5 to 1.9 years) and 70% less primary production is required to sustain it. 7. The increased turnover time of the fish community will lead to greater interannual instability in biomass and production, complicating management action and increasing the sensitivity of populations to environmental change. 8. This size-based method based on macroecological theory may provide a powerful new tool for setting ecosystem indicator reference levels, comparing fishing impacts in different ecosystems and for assessing the relative impacts of fishing and climate change
    corecore