82 research outputs found

    2002-2003 Chamber Music Concert

    Get PDF
    https://spiral.lynn.edu/conservatory_otherseasonalconcerts/1077/thumbnail.jp

    2000-2001 Concert An Afternoon at the Opera

    Get PDF
    https://spiral.lynn.edu/conservatory_otherseasonalconcerts/1104/thumbnail.jp

    Complement activation via the lectin and alternative pathway in patients with severe COVID-19

    Get PDF
    Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19

    Women Scientists Who Made Nuclear Astrophysics

    Get PDF
    Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one's social, gender, or racial group [1,2]. This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible [3]. In response to this situation, we present a selection of twelve outstanding women who helped to develop nuclear astrophysics

    QTL mapping in autotetraploids using SNP dosage information

    Get PDF
    Dense linkage maps derived by analysing SNP dosage in autotetraploids provide detailed information about the location of, and genetic model at, quantitative trait loci. Recent developments in sequencing and genotyping technologies enable researchers to generate high-density single nucleotide polymorphism (SNP) genotype data for mapping studies. For polyploid species, the SNP genotypes are informative about allele dosage, and Hackett et al. (PLoS ONE 8:e63939, 2013) presented theory about how dosage information can be used in linkage map construction and quantitative trait locus (QTL) mapping for an F1 population in an autotetraploid species. Here, QTL mapping using dosage information is explored for simulated phenotypic traits of moderate heritability and possibly non-additive effects. Different mapping strategies are compared, looking at additive and more complicated models, and model fitting as a single step or by iteratively re-weighted modelling. We recommend fitting an additive model without iterative re-weighting, and then exploring non-additive models for the genotype means estimated at the most likely position. We apply this strategy to re-analyse traits of high heritability from a potato population of 190 F1 individuals: flower colour, maturity, height and resistance to late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematode (Globodera pallida), using a map of 3839 SNPs. The approximate confidence intervals for QTL locations have been improved by the detailed linkage map, and more information about the genetic model at each QTL has been revealed. For several of the reported QTLs, candidate SNPs can be identified, and used to propose candidate trait genes. We conclude that the high marker density is informative about the genetic model at loci of large effects, but that larger populations are needed to detect smaller QTLs
    • …
    corecore