24 research outputs found
Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda.
BACKGROUND: Southwestern Uganda has high malaria heterogeneity despite moderate vector control and other interventions. Moreover, the early biting transmission and increased resistance to insecticides might compromise strategies relying on vector control. Consequently, monitoring of vector behaviour and insecticide efficacy is needed to assess the effectiveness of strategies aiming at malaria control. This eventually led to an entomological survey in two villages with high malaria prevalence in this region. METHODS: During rainy, 2011 and dry season 2012, mosquitoes were collected in Engari and Kigorogoro, Kazo subcounty, using human landing collection, morning indoor resting collection, pyrethrum spray collection and larval collection. Circumsporozoite protein of Plasmodium falciparum sporozoites in female Anopheles mosquitoes was detected using ELISA assay. Bioassays to monitor Anopheles resistance to insecticides were performed. RESULTS: Of the 1,021 female Anopheles species captured, 62% (632) were Anopheles funestus and 36% (371) were Anopheles gambiae s.l. The most common species were Anopheles gambiae s.l. in Engari (75%) and A. funestus in Kigorogoro (83%). Overall, P. falciparum prevalence was 2.9% by ELISA. The daily entomological inoculation rates were estimated at 0.17 and 0.58 infected bites/person/night during rainy and dry season respectively in Engari, and 0.81 infected bites/person/night in Kigorogoro during dry season. In both areas and seasons, an unusually early evening biting peak was observed between 6 - 8 p.m. In Engari, insecticide bioassays showed 85%, 34% and 12% resistance to DDT during the rainy season, dry season and to deltamethrin during the dry season, respectively. In Kigorogoro, 13% resistance to DDT and to deltamethrin was recorded. There was no resistance observed to bendiocarb and pirimiphos methyl. CONCLUSIONS: The heterogeneity of mosquito distribution, entomological indicators and resistance to insecticides in villages with high malaria prevalence highlight the need for a long-term vector control programme and monitoring of insecticide resistance in Uganda. The early evening biting habits of Anopheles combined with resistance to DDT and deltamethrin observed in this study suggest that use of impregnated bed nets alone is insufficient as a malaria control strategy, urging the need for additional interventions in this area of high transmission
Genetic diversity and population structure of Glossina pallidipes in Uganda and western Kenya
<p>Abstract</p> <p>Background</p> <p><it>Glossina pallidipes </it>has been implicated in the spread of sleeping sickness from southeastern Uganda into Kenya. Recent studies indicated resurgence of <it>G. pallidipes </it>in Lambwe Valley and southeastern Uganda after what were deemed to be effective control efforts. It is unknown whether the <it>G. pallidipes </it>belt in southeastern Uganda extends into western Kenya. We investigated the genetic diversity and population structure of <it>G. pallidipes </it>in Uganda and western Kenya.</p> <p>Results</p> <p>AMOVA indicated that differences among sampling sites explained a significant proportion of the genetic variation. Principal component analysis and Bayesian assignment of microsatellite genotypes identified three distinct clusters: western Uganda, southeastern Uganda/Lambwe Valley, and Nguruman in central-southern Kenya. Analyses of mtDNA confirmed the results of microsatellite analysis, except in western Uganda, where Kabunkanga and Murchison Falls populations exhibited haplotypes that differed despite homogeneous microsatellite signatures. To better understand possible causes of the contrast between mitochondrial and nuclear markers we tested for sex-biased dispersal. Mean pairwise relatedness was significantly higher in females than in males within populations, while mean genetic distance was lower and relatedness higher in males than females in between-population comparisons. Two populations sampled on the Kenya/Uganda border, exhibited the lowest levels of genetic diversity. Microsatellite alleles and mtDNA haplotypes in these two populations were a subset of those found in neighboring Lambwe Valley, suggesting that Lambwe was the source population for flies in southeastern Uganda. The relatively high genetic diversity of <it>G. pallidipes </it>in Lambwe Valley suggest large relict populations remained even after repeated control efforts.</p> <p>Conclusion</p> <p>Our research demonstrated that <it>G. pallidipes </it>populations in Kenya and Uganda do not form a contiguous tsetse belt. While Lambwe Valley appears to be a source population for flies colonizing southeastern Uganda, this dispersal does not extend to western Uganda. The complicated phylogeography of <it>G. pallidipes </it>warrants further efforts to distinguish the role of historical and modern gene flow and possible sex-biased dispersal in structuring populations.</p
Multiple evolutionary origins of Trypanosoma evansi in Kenya
Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina) for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51) and T. b. rhodesiense (n = 15), including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense
Medical and Entomological Malarial Interventions, a Comparison and Synergy of Two Control Measures Using a Ross/Macdonald Model Variant and \u3cem\u3eOpenmalaria\u3c/em\u3e Simulation
Using an established Ross/Macdonald model variant for mosquito-born parasite transmission, we extend the formalism to simply incorporate time-dependent control measures. In particular, two interventions are considered, mass drug administration (MDA) and indoor residual spraying (IRS), whose individual intensities during their respective campaigns are set to the same intervention-reduced reproductive number R0. The impacts of these interventions, measured as each campaignâs ability over time to reduce infections in a community, are found based on the transmission setting, coverage, and their associated durations. These impacts are compared for both interventions and their joint deployment. Synchronous campaigns of IRS deployed with MDA have a cooperative, synergistic effect whose impact exceeds that when the campaigns are deployed in isolation. Simulations with openmalaria, with its more complex model of transmission, are separately performed and show a similar impact enhancement with these interventions. A new, associated analysis yields simple scaling relationships that estimate the dynamical resurgence time, post-intervention, to infection proliferation in a community