152 research outputs found

    Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography–mass spectrometry

    Get PDF
    A simple and effective method has been developed for analysis of the flame retardant tetrabromobisphenol A (TBBPA) in environmental samples by using modified soxhlet extraction in combination with silica gel clean-up, derivatization with silylation reagent and gas chromatography–mass spectrometry (GC–MS) in selected ion monitoring mode (SIM). Satisfactory recoveries were achieved for the large volume sampling, soxhlet extraction and silica gel clean-up. The overall recovery is 79 ± 1%. The derivatization procedure is simple and fast, and produces stable TBBPA derivative. GC–MS with electronic impact (EI) ionization mode shows better detection power than using negative chemical ionization (NCI) mode. EI gives a method detection limit of 0.04 pg m−3 and enables to determine trace TBBPA in ambient air in remote area. The method was successfully applied to the determination of TBBPA in atmospheric samples collected over land and coastal regions. The concentrations of TBBPA ranged from below the method detection limit (0.04 pg m−3) to 0.85 pg m−3. A declining trend with increasing latitude was present from the Wadden Sea to the Arctic. The atmospheric occurrence of TBBPA in the Arctic is significant and might imply that TBBPA has long-range transport potential

    Accumulation of perfluoroalkyl compounds in Tibetan mountain snow:temporal patterns from 1980 to 2010

    Get PDF
    The use of snow and ice cores as recorders of environmental contamination is particularly relevant for per- and polyfluoroalky substances (PFASs) given their production history, differing source regions and varied mechanisms driving their global distribution. In a unique study perfluoroalkyl acids (PFAAs) were analyzed in dated snow-cores obtained from high mountain glaciers on the Tibetan Plateau (TP). One snow core was obtained from the Mt Muztagata glacier (accumulation period of 1980–1999), located in western Tibet and a second core from Mt. Zuoqiupo (accumulation period: 1996–2007) located in southeastern Tibet, with fresh surface snow collected near Lake Namco in 2010 (southern Tibet). The higher concentrations of ∑PFAAs were observed in the older Mt Muztagata core and dominated by perfluorooctanesulfonic acid (PFOS) (61.4–346 pg/L) and perfluorooctanoic acid (PFOA) (40.8–243 pg/L), whereas in the Mt Zuoqiupu core the concentrations were lower (e.g., PFOA: 37.8–183 pg/L) with PFOS below detection limits. These differences in PFAA concentrations and composition profile likely reflect the upwind sources affecting the respective sites (e.g., European/central Asian sources for Mt Muztagata and India sources for Mt Zuoqiupu). Perfluorobutanoic acid (PFBA) dominated the recent surface snowpack of Lake Namco which is mainly associated with India sources where the shorter chain volatile PFASs precursors predominate. The use of snow cores in different parts of Tibet provides useful recorders to examine the influence of different PFASs source regions and reflect changing PFAS production/use in the Northern Hemisphere

    Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary

    Get PDF
    Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral Sigma PFASs were within the range of 76-551 pg/m(3). Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral Sigma PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral Sigma PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition, were simulated for neutral PFASs, and neutral Sigma PFASs fluxes varied from 0.37 to 23 pg/m(2)/s. In the dissolved phase of the surface water, concentrations of ionic Sigma PFASs ranged from 1.6 to 118 ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic Sigma PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic Sigma PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. (C) 2017 Elsevier B.V. All rights reserved

    Multi-Decadal Decline of Mercury in the North Atlantic Atmosphere Explained by Changing Subsurface Seawater Concentrations

    Get PDF
    [1] We analyze 1977–2010 trends in atmospheric mercury (Hg) from 21 ship cruises over the North Atlantic (NA) and 15 over the South Atlantic (SA). We find a steep 1990–2009 decline of −0.046 ± 0.010 ng m−3 a−1 (−2.5% a−1) over the NA (steeper than at Northern Hemispheric land sites) but no significant decline over the SA. Surface water Hg0 measurements in the NA show a decline of −5.7% a−1since 1999, and limited subsurface ocean data show an ∌80% decline from 1980 to present. We use a coupled global atmosphere-ocean model to show that the decline in NA atmospheric concentrations can be explained by decreasing oceanic evasion from the NA driven by declining subsurface water Hg concentrations. We speculate that this large historical decline of Hg in the NA Ocean could have been caused by decreasing Hg inputs from rivers and wastewater and by changes in the oxidant chemistry of the atmospheric marine boundary layer.Engineering and Applied Science

    El Niño-Southern Oscillation influence on tropospheric mercury concentrations

    Get PDF
    The El Nino-Southern Oscillation (ENSO) affects the tropospheric concentrations of many trace gases. Here we investigate the ENSO influence on mercury concentrations measured in the upper troposphere during Civil Aircraft for the Regular Investigation of the atmosphere Based on an instrumented Container flights and at ground at Cape Point, South Africa, and Mace Head, Ireland. Mercury concentrations cross-correlate with Southern Oscillation Index (SOI) with a lag of 8 +/- 2 months. Highest mercury concentrations are always found at the most negative SOI values, i.e., 8 months after El Nino, and the amplitude of the interannual variations fluctuates between similar to 5 and 18%. The time lag is similar to that of CO whose interannual variations are driven largely by emissions from biomass burning (BB). The amplitude of the interannual variability of tropospheric mercury concentrations is consistent with the estimated variations in mercury emissions from BB. We thus conclude that BB is a major factor driving the interannual variation of tropospheric mercury concentrations

    Polycyclic aromatic hydrocarbons in ocean sediments from the North Pacific to the Arctic Ocean

    Get PDF
    Abstract Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average ÎŁ18PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g−1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g−1 dw) and Bering Sea (39.5 ± 11.3 ng g−1 dw), while the Bering Strait (16.8 ± 7.1 ng g−1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g−1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∌42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∌32%, and high temperature pyrogenic sources contributing ∌26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires

    Mercury plumes in the global upper troposphere observed during flights with the CARIBIC observatory from May 2005 until June 2013

    Get PDF
    Tropospheric sections of flights with the CARIBIC (Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrumented Container) observatory from May 2005 until June 2013, are investigated for the occurrence of plumes with elevated Hg concentrations. Additional information on CO, CO, CH, NO, O, hydrocarbons, halocarbons, acetone and acetonitrile enable us to attribute the plumes to biomass burning, urban/industrial sources or a mixture of both. Altogether, 98 pollution plumes with elevated Hg concentrations and CO mixing ratios were encountered, and the Hg/CO emission ratios for 49 of them could be calculated. Most of the plumes were found overEast Asia, in the African equatorial region, over South America and over Pakistan and India. The plumes encountered over equatorial Africa and over South America originate predominantly from biomass burning, as evidenced by the low Hg/CO emission ratios andelevated mixing ratios of acetonitrile, CHCl and particle concentrations. The backward trajectories point to the regions around the Rift Valley and the Amazon Basin, with its outskirts, as the source areas. The plumes encountered over East Asia and over Pakistan and India are predominantly of urban/industrial origin, sometimes mixed with products of biomass/biofuel burning. Backward trajectories point mostly to source areas in China andnorthern India. The Hg/CO and Hg/CH emission ratios for several plumes are also presented and discussed

    Investigating the uptake and fate of poly- and perfluoroalkylated substances (PFAS) in sea ice using an experimental sea ice chamber

    Get PDF
    Poly- and perfluoroalkyl substances (PFAS) are contaminants of emerging Arctic concern and are present in the marine environments of the polar regions. Their input to and fate within the marine cryosphere are poorly understood. We conducted a series of laboratory experiments to investigate the uptake, distribution, and release of 10 PFAS of varying carbon chain length (C4–C12) in young sea ice grown from artificial seawater (NaClsolution). We show that PFAS are incorporated into bulk sea ice during ice formation and regression analyses for individual PFAS concentrations in bulk sea ice were linearly related to salinity (r2 = 0.30 to 0.88, n = 18, p < 0.05). This shows that their distribution is strongly governed by the presence and dynamics of brine (high salinity water) within the sea ice. Furthermore, long-chain PFAS (C8–C12), were enriched in bulk ice up to 3-fold more than short-chain PFAS (C4–C7) and NaCl. This suggests that chemical partitioning of PFAS between the different phases of sea ice also plays a role in their uptake during its formation. During sea ice melt, initial meltwater fractions were highly saline and predominantly contained short-chain PFAS, whereas the later, fresher meltwater fractions predominantly contained long-chain PFAS. Our results demonstrate that in highly saline parts of sea ice (near the upper and lower interfaces and in brine channels) significant chemical enrichment (Δ) of PFAS can occur with concentrations in brine channels greatly exceeding those in seawater from which it forms (e.g., for PFOA, Δrinebrine = 10 ± 4). This observation has implications for biological exposure to PFAS present in brine channels, a common feature of first-year sea ice which is the dominant ice type in a warming Arctic
    • 

    corecore