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Abstract 10 

The use of snow and ice cores as recorders of environmental contamination is particularly 11 

relevant for per- and polyfluoroalky substances (PFASs) given their production history, 12 

differing source regions and varied mechanisms driving their global distribution. In a unique 13 

study perfluoroalkyl acids (PFAAs) were analysed in dated snow-cores obtained from high 14 

mountain glaciers on the Tibetan Plateau (TP). One snow core was obtained from the Mt 15 

Muztagata glacier (accumulation periods of 1980-1999), located in western Tibet and a 16 

second core from Mt. Zuoqiupo (accumulation periods of 1996-2007) located in south eastern 17 

Tibet, with fresh surface snow collected near Lake Namco in 2010 (southern Tibet). The 18 

higher concentrations of ΣPFAAs were observed in the older Mt Muztagata core and 19 

dominated by perfluorooctane sulfonate (PFOS) (61.4-346 pg/L) and perflurooctanoic acid 20 

(PFOA) (40.8-243 pg/L), whereas in the Mt Zuoqiupu core the concentrations were lower 21 

(e.g. PFOA: 37.8-183 pg/L) with PFOS below detection limits. These differences in PFAA 22 

concentrations and composition profile likely reflect the downwind upwind sources affecting 23 

the respective sites (e.g. European/central Asian sources for Mt Muztagata and India sources 24 

for Mt Zuoqiupo). Perfluorobutanoic acid (PFBA) dominated the recent surface snowpack of 25 

Lake Namco which is mainly associated with India sources where the shorter chain volatile 26 

PFASs precursors predominate. The use of snow cores in different parts of Tibet provides 27 

useful recorders to examine the influence of different PFASs source regions and reflect 28 

changing PFAS production/use in the Northern Hemisphere.  29 

 30 

 31 

 32 
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Introduction 33 

Per- and polyfluoroalkyl substances (PFASs) are widely distributed in the global 34 

environment1 and are present in both humans2 and a wide range of biota. 3-5 Due to its 35 

persistence, its ability to undergo long-range transport (LRT) and its bioaccumulative 36 

behaviour, perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonyl fluoride 37 

(POSF)-based chemicals which can degrade and form PFOS are now listed under Annex B of 38 

restricted substances of the UNEP Stockholm Convention on persistent organic pollutants 39 

(POPs).6 In remote environments like the Arctic, perfluoroalkyl acids (PFAAs) arise  40 

through a combination of LRT processes, including advection with surface ocean currents as 41 

well as transport in the atmosphere.7-10 In the atmosphere, PFAAs arise through the 42 

photochemical oxidation of volatile per- and polyfluoroalkyl precursors which are also 43 

subject to LRT.9,11-13 PFAAs may also be transported by the creation of marine aerosol 44 

derived from ocean surfaces, complicating the pathways by which these chemicals enter 45 

remote environments.14, 15 However, for the continental interiors such as the Tibetan Plateau 46 

(TP) the influence of oceanic sources will be greatly diminished and PFAAs deposited to 47 

surfaces will have arrived through photochemical oxidation of volatile precursors and/or 48 

particle-mediated transport from source areas. 49 

Given the lack of long-term systematic observations of PFAAs in air monitoring programmes 50 

then their depositional/accumulation history preserved in snow-ice presents a useful way to 51 

assess the hemispheric or global use history and to observe changing sources or use practices. 52 

Young et al.10 constructed an accumulation time series of C8-C12 PFAAs for perennial 53 

snow/firn on the Devon Island icecap in the Canadian Arctic. They observed a decrease in 54 

PFOS concentrations from 1998 to 2006, indicating a fast response in environmental 55 

concentrations following the phase out of POSF-chemicals in the late 1990s/early 2000s.10 56 

The occurrence of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnDA) 57 

in the Devon Island icecap indicate that atmospheric oxidation of volatile precursors is an 58 

important source of PFAAs to Arctic surfaces. 10 More recently, Kirchgeorg et al. 16 59 

measured PFAAs accumulation in snow collected from Colle Gnifetti glacier in the 60 

Swiss/Italian Alps. They observed a significant increase in the proportion of the shorter chain 61 

(C4) perfluorobutanoic acid (PFBA) in the most recent years of the time-series and attributed 62 

this composition change to the increased release of PFBA (or precursors) by local sources.16 63 
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Snow and ice core records for chemical contaminants including POPs, have been obtained 64 

from temperate mountain environments. 17-26 The TP has the largest aggregate of glaciers 65 

outside the Polar Regions with many of the mountain glaciers located at high altitudes where 66 

summertime temperatures do not routinely exceed 0oC, thus reducing melt artefacts. TP is 67 

particularly interesting as this high altitude remote region allows an assessment of pollution 68 

impacts from Asia as well as the wider northern hemisphere and can make a useful 69 

comparison to deposition studies conducted in the European Alps16 and Arctic.10 70 

Recently, organochlorine pesticides have been reported in ice-cores from the TP and their 71 

temporal patterns related to chemical use practices and abatement strategies. 24 To date, the 72 

occurrence of the PFASs in lake fish of the Tibetan Plateau has been reported .27 However, 73 

there is little or no information in the literature about levels of PFASs in mountain snow or 74 

ice of the Tibetan Plateau. In this study, snow cores and surface snow were sampled in the 75 

regions of Mt. Zuoqiupu (accumulation periods of 1996-2007), Muztagata glacier 76 

(accumulation periods of 1980-1999), and Namco (snow for 2010), respectively. The aim of 77 

this study was to determine the depositional history of PFASs over this time series and 78 

examine changes to chemical profiles given geographical differences among samples sites 79 

and the possible influence of difference PFAS-source regions.  80 

2. Methods 81 

Location of sampling sites. Three locations on the TP were chosen to investigate the 82 

temporal changes of PFASs (Figure 1). Snow cores were retrieved from the glaciers of Mt. 83 

Muztagata (75.10 °E, 38.28 °N, 6300 m, north-western TP) and Mt. Zuoqiupu (96.92 °E, 84 

29.21 °N, 5600 m, south-eastern TP), while surface snow was collected near Lake Namco 85 

(90.95 °E, 30.73°N, 4800m, southern TP). Details about the sampling locations are available 86 

as supporting information (SI, Figure SI-1). In general, snowfall on the northern and 87 

north-western parts of the Plateau is associated mainly with the westerly jet stream, which 88 

moves southward toward the Himalayas in winter (Figure 1).28 Thus, glaciers on the southern 89 

plateau can receive precipitation through air masses from the south via the Indian monsoon 90 

during summer and from the west during winter (Figure 1). 28 As a result, due to the different 91 

upwind airsheds, these three snow sampling sites may differ with regards to their contaminant 92 

loading and profile due to the influence of different source regions. 93 

 94 

Sampling methodology. In September 1999, a 22.4 m snow core was retrieved at Mt. 95 
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Muztagata and a snow core of 30 m was collected in May of 2007 at Mt. Zuoqiupu. These 96 

scientific expeditions were organized by the Chinese Academy of Sciences (CAS). After the 97 

drilling, pre-combusted Al foil envelopes were employed for core handling in the field to 98 

minimize contamination. Snow core samples were packed in double-sealed polyethylene bags 99 

and transported frozen to the laboratory by refrigerated trucks. Preparation of snow core 100 

samples was carried out in a cold room (-20 °C). Snow cores (ID = 9cm) were mechanically 101 

peeled into three parts (the outer, middle materials and the inner core). The inner core was 102 

kept frozen in the dark in pre-cleaned glass jars until analysis. The outer and the middle parts 103 

of the snow core were cut into sections at 5 cm intervals for the measurements ofδ18O for 104 

core-section dating. Based on the dating results (see below), the inner core was melted and 105 

extracted for PFASs. Details about the snow core is given in Table SI-1. 106 

 107 

Snow samples were collected in December 2010. During November-December 2010, snow 108 

samples were collected during 3 snow events. Heavy snowfalls resulting in snow depth 109 

accumulations of ~31 cm and 40 cm occurred on 24 November and 10 December, 110 

respectively. Snow samples were collected vertically and obtained by excavating a snowpit 111 

down to the ground. The snowpit was dug to a depth of 86 cm. The pit wall was sub-sampled 112 

with a stainless-steel cube (volume: 1 L) at 10 cm intervals over the entire vertical profile. 113 

Approximately 4 L of snow were collected for each sample. The snow samples were 114 

transported to the laboratory in pre-rinsed stainless-steel containers and left to melt at room 115 

temperature. Snow depth (in water equivalents) and snow density were determined for each 116 

sample as described in Table SI-2. To avoid contamination, materials with fluoropolymer 117 

coatings and fluoropolymer products were strictly avoided at Namco. 118 

 119 

Snow Core Dating. Snow core dating was achieved via the annual layer counting that is 120 

made from the continuous concentration profiles of seasonally varyingδ18O. A preliminary 121 

time-depth profile of the ice core was achieved by assigning to the surface of the core a time 122 

point of 1999 and 2007 (the time of drilling) for the Mt. Muztagata glacier and Mt. Zuoqiupu 123 

glacier, respectively. Theδ18O-depth profiles are shown in Figure SI-2. For the Mt. 124 

Muztagata glacier, theδ18O isotopic ratio displayed a seasonal trend, marked by higher 125 

values in summer precipitation and lower values in winter (Figure SI-2).29 However in the Mt. 126 

Zuoqiupu core a more depleted δ18O isotopic ratio occurs during the summer periods with 127 

higher values during the winter, reflecting the influence of the summertime monsoon season, 128 
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30 (for further details see Figure SI-2). The seasonality of δ18O details the approximate 129 

annual layers and provides a basis for dating. Using the seasonal fluctuations ofδ18O along 130 

the profile, the 30-m snow core of Mt. Zuoqiupu was dated to 12 years (from 1996 to 2007, 131 

Figure SI-2) and the 22.4-m snow core of Mt. Muztagata was dated to 20 years (from 1980 to 132 

1999, Figure SI-2). The processes that may lead to dating uncertainties are provided in Text 133 

SI-1. 134 

According to the dating results, the annual accumulation for these two snow cores 135 

differed from each other. Mt. Zuoqiupu snow core had the highest accumulation, with the 136 

highest SWE of 11.9 kg m-2 yr-1 in 2004 (Table SI-1). However, the Mt. Muztagata snow core 137 

had a water equivalent accumulation of 2.6-6.3 kg m-2 yr-1, approximately a third to a half of 138 

that accumulated for Mt. Zuoqiupu (Table SI-1). Therefore, in order to achieve sufficient 139 

melt water (>2L) for PFC analysis, the Mt. Muztagata snow core sections representing 2 to 140 

3-years of accumulation were combined and melted (see Table SI-1 and Figure SI-2). 141 

Immediately after melting, the water sample was filtered through a quartz fibre filter (QFF) 142 

(previously baked at 450°C). Filter samples were also extracted for PFASs and the amount of 143 

particulate matter for each sample was also measured and provided in Table SI-1. 144 

 145 

Three kinds of blanks were prepared in this study, namely deep snow/ice meltwater blank, 146 

ground-water blank and laboratory blanks. Deep snow/ice was taken from ~100 m depth and 147 

represented snow that was >100 and ~60 years old for Mts. Muztagata and Zuoqiupu glaciers, 148 

respectively. The ground water (~60m depth) was collected from the Lake Namco region, 149 

close to the surface snow sampling site of this study (Figure SI-1). In each case 2L of melted 150 

deep-snow water and ground water were used as blanks. Laboratory blanks were generated 151 

by spiking the PFASs recovery standard directly into SPE cartridges and following an 152 

extraction process identical to the real samples. In total, 6 melted deep snow water blanks, 3 153 

ground water blanks and 6 laboratory blanks were prepared to test for contamination artefacts 154 

and to generate limits of the detection (LOD). 155 

Sample Extraction. Filtered metwater samples were subject to solid phase extraction (SPE) 156 

using Waters Oasis WAX cartridges (150 mg, 6 cm3, 30 mm), akin to methods described 157 

elsewhere. 31 Prior to extraction, the samples were spiked with 400 pg absolute of a recovery 158 

standard (RS) mix (Table SI-3). After preconditioning with 5 mL MeOH and 5 mL distilled 159 

Millipore water, the SPE cartridge was loaded with the water sample (2 Llitters) and eluted at 160 

~1−2 drops per second, after which each cartridge was washed with 0.1% acetic acid and 161 
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dried for 20 minutes under vacuum. The cartridges and filters were then wrapped in Al-foil 162 

and sealed into air-tight containers with dry ice and transported to the Helmholtz-Zentrum 163 

Geesthacht, Germany. The cartridges and filters were stored at -20°C until extraction. Each 164 

cartridge was then air dried for 30 min under vacuum. For this operation an additional WAX 165 

cartridge was connected to the top of the sample cartridge to ensure that the air stream was 166 

free of PFASs. 32 Analytes were eluted from the WAX cartridges using 10 mL MeOH with 167 

0.1% ammonium hydroxide. The extracts were concentrated to 200 µL by nitrogen and 168 

spiked with 20 ng absolute of the injection standard 2H-perfluoro-[1,2-13C2]-2-decenoic acid 169 

(8:2FTUCA) (50 µL of a 0.4 µg/mL solution, Table SI-3). The QFF were spiked with the 170 

same RS mix and sonicated with 20 mL of MeOH for 30 min. This extraction was performed 171 

three times and these 3 fractions were combined and reduced by rotary evaporation. Finally, 172 

the extract was reduced to 200 μL under a gentle stream of nitrogen and spiked with the 173 

injection standard mentioned above. 174 

 175 

Instrument analysis. Detials of the instrumental analytical method has been described in 176 

elsewhere.33 Briefly, an HP 1100 HPLC-system (Agilent Technologies) was used with a 177 

Synergi Hydro RP C18 80A column (150 × 2 mm, 4 μm, by Phenomenex), combined with a 178 

suitable guard column (Synergi 2 μ Hydro RP Mercury, 20 ×2 mm, 2 μm). Modifications of 179 

the HPLC system were made by removing Teflon parts to eliminate instrumental blank 180 

contamination. The triple-quadrupole mass spectrometer [Applied Biosystems/MDS SCIEX 181 

(API 3000)] was operated in electrospray ionisation (ESI) in negative ionisation mode. 182 

Quantification was performed using response factors calculated and applied to an 8-point 183 

calibration curve ranging from 0 to 15 pg µL-1 for individual analytes. Target analytes 184 

included the C4-C14 perfluorocarboxylic acids (PFCAs) and C4-C10 perfluorosulfonic acids 185 

(PFSAs). A full list of analytes is provided in Table SI-4.  186 

Quality controls and assurance. Recovery of each spiked sample was provided in Table 187 

SI-5 and blank values are provided in Table SI-6. Compounds were classified as not detected 188 

(ND) when a signal to noise ratio (S/N) was <3. Only PFOA was detected in the laboratory 189 

blanks, while PFOS, PFBA, perfluoropentanoic acid (PFPA) and PFOA were detected in 190 

melted deep snow water (DSW) blanks. The limit of detection (LOD) was then quantified as 191 

the standard deviation of the average DSW blank. If chemicals were not detected in the DSW 192 

blanks, the LOD was calculated as a S/N ratio of 10. The LODs based on a 2 L water sample 193 
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were 25 pg/L for PFOS and PFPA, 15pg/L for PFBA, 5pg/l for PFUnDA, 10 pg/L for PFOA, 194 

PFNA and PFDoDA, and 20 pg/L for the other PFAAs. Table SI-7 provides the average 195 

blank concentrations and the corresponding LODs expressed as pg /L. The LOD values 196 

reported here are similar to those reported by previous studies and the overall analytical 197 

quality has been assured through participation in inter-laboratory studies.10, 33-35 The blank 198 

test indicated that field sampling did not result in contamination of the samples. No 199 

background contamination was detected in the filter blanks for the particulate phase. In the 200 

present study, a total of 6, 8 and 11 PFAAs of the 16 PFAAs in the standard were quantified 201 

in the Zuoqiupu glacier snow core, Muztagata snow core and fresh snow samples, 202 

respectively (all samples were blank corrected with, for further details presented insee SI 203 

Tables SI 8-10). Recoveries ranged between 29-155% for recovery mix (see SI Table SI-5).  204 

All results were recovery corrected. Duplicate measurements were conducted on 15 paired 205 

samples (see Tables S-11 and S-12). The relative standard deviation between the duplicates 206 

was 5-40%, 4-48% for the Mt. Zuoqiupu andsnow core, Mt. Muztagata snow core samples 207 

(Tables SI-13, SI-14), respectively, and 6-47% for triplicate fresh snow samples from Namco 208 

(see Table SI-10). 209 

 210 

Results & Discussion 211 

Overview to the Tibetan Plateau and pollution sources. Interpretation of the temporal 212 

changes of pollutants in a snow core depends on knowledge of the meteorology and major 213 

emission sources. The highest snowfall/precipitation on the Plateau coincides with the Indian 214 

monsoon, which reaches about 32 °N during summer (Figure 1). 36 However, snowfall on the 215 

northern and north-western parts of the plateau is associated mainly with the westerly air 216 

masses (Figure 1). Thus, wet deposition of airborne contaminants to Tibetan glaciers derives 217 

primarily from two directions: west and south. For example, Xu et al. 30 attributed decreased 218 

carbonaceous particle concentrations on the Muztagata glacier in the 1970s-1980s to 219 

diminished European sources following the rise in European environmental regulations 30. In 220 

addition, Pb has been detected in an ice core from Mt. Muztagata. The temporal trends 221 

showed increasing Pb concentrations from 1955 to 1993, with a decrease after 1993.37 This 222 

variation was closely associated with the anthropogenic emissions from countries in Central 223 

Asia.37 On the other hand, pollutant source regions affecting the south-eastern Plateau have 224 

been largely assigned to south Asia.38 For the Zuoqiupu glacier, the southern branch of the 225 

westerlies that sweep over the south side of the Himalaya–Hindu Kush range (Figure 1) 226 
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combined with the Indian monsoon make the Zuoqiupu site a receptor of south Asian 227 

sources.30 This raises important questions with regards to PFAA contaminants. For example, 228 

can PFA profiles obtained from different snow cores across the TP reflect the influence of 229 

their corresponding source regions (Asian or European)? Recently, there is evidence that 230 

manufacturing of PFAAs has shifted from longer chain chemicals (C8 and above) to shorter 231 

chain ones (C4) 39, 40 and manufacturing output has increasingly centred on Asian countries.39, 232 
41-43 Similarly, can the Tibetan snow record these shifts? Comparison of the PFAA 233 

concentrations, deposition fluxes and congener profiles of this study with other remote 234 

regions, such as the Arctic and European Alps, should provide a better understanding of the 235 

influence of different or changing sources across the Northern Hemisphere.  236 

 237 

PFA concentrations in snow. The full dataset of the measured PFA concentrations in the 238 

Tibetan snow are available as Tables SI 8-10 (Supporting Information). Concentrations of the239 

ΣPFAAs in the Mt. Muztagata (western Tibet, accumulation periods of 1980-1999) snow 240 

ranged from 193 to 927 pg/L, while those in the Mt. Zuoqiupu glacier (south eastern Tibet, 241 

accumulation periods of 1996-2007) were markedly lower ranging from 37.8 to 370 pg/L. 242 

Relatively higher PFAA concentrations in the snow core of Mt. Muztagata may be due to the 243 

influence of the prevailing westerlies and the influence of upwind European sources during 244 

the earlier snow accumulation period. 30 The concentrations of PFAAs in the present study 245 

were compared with those observed in Polar and remote regions and provided in Table 1. The 246 

PFAA concentrations in the Mt. Zuoqiupu glacier are similar to the concentrations reported 247 

for the Devon Island icecap (Canadian Arctic, accumulation period of 1996-2006).10 248 

However, concentrations of ΣPFAAs in the Mt. Muztagata glacier are higher than those of 249 

the Devon Island study 10 but lower than those observed in a recent snow core from the Colle 250 

Gnifetti located in the Swiss/Italian Alps (accumulation range: 1996-2008).16 PFAA 251 

emissions from European countries are likely to account for the higher levels of PFAAs 252 

observed in the Colle Gnifetti snow core16 and support the assumption that higher levels 253 

observed in the older Mt Muztagata core are due to the influence of a European signal. Snow 254 

and rainfall are important wet depositional sources of PFAAs 44 and have been measured at 255 

several locations across the Northern Hemisphere. 42 Generally, high concentrations of 256 

PFAAs were found in urban areas with much lower concentrations reported for precipitation 257 

analysed from remote regions. The concentrations ofΣPFAAs measured in both Mt. 258 

Muztagata and Mt. Zuoqiupu glacier snow were lower than those observed in precipitation 259 
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(collected in 2002) from remote parts of Canada42 as well as the lake water from a glacier-fed 260 

lake in the North American Rockies. 45 In this study, the surface fresh snow samples collected 261 

at Namco contained ΣPFAAs concentrations up to 4236 pg/L, which is similar to 262 

concentrations observed in surface snow from the Arctic 46 and Antarctic.47 These 263 

comparisons indicate that concentrations of PFAAs in contemporary snow in the south 264 

eastern part of the TP are akin to those observed in the Polar Regions indicating the 265 

remoteness of this region.  266 

 267 
Time-series and PFC depositional fluxes. Depth concentrations of PFAAs measured on the 268 

Tibetan glaciers are shown in Figure 2 with data provided in Tables SI 8 and 9. For the Mt. 269 

Muztagata snow core, concentrations ofΣPFAAs increased continuously over the time 270 

period studied (see Figure 2a). Similar results were observed for individual PFAAs, such as 271 

PFOA and PFOS (Figure SI-3) and in broad agreement with the time series of global 272 

emissions for PFOA and PFOSF-based substances.48 This finding generally supports the 273 

time-series of PFOS concentrations observed in selected Arctic biota, whereby PFOS levels 274 

have been observed to increase in Arctic ringed seals (Phoca hispida) up to the year 2000 275 

before levelling off or declining.49 It must be noted however, that there are geographic 276 

disparities across the Arctic with regards to temporal trends of PFAAs in biota.49 For Mt. 277 

Zuoqiupu, the time-series of ΣPFAAs concentrations in the snow core can be broadly 278 

broken down into three periods (Figure 2b). An increase was observed from 1996 to 1999, 279 

followed by a sharp decrease from 2000 to 2004 and then a marked increase from 2005 280 

onwards. The snow core of Mt. Zuoqiupu, (located in south-eastern TP) showed evidence of 281 

melting, with layers of ice marking freeze-thaw events in sections of the core (see description 282 

of the snow core, Table SI-1). Air temperatures during the summer regularly exceed 0oC 283 

resulting in seasonal snow melt. It is therefore plausible that some PFAAs may have migrated 284 

down the snow core thereby altering their vertical and hence temporal distribution. From 285 

Table SI-1, melting was clearly apparent within sections of the core dated as 1998 and 1999, 286 

i.e. ice layers of 87 and 80cm thick respectively were present in each of the core sections. The 287 

presence of ice layers will impede the percolation of meltwater from above, preventing 288 

further movement of soluble contaminants down the snow core and resulting in accumulation 289 

of PFAAs at these key layers.50 This process may account for the elevated concentrations 290 

observed for the 1998/1999 layers and is supported to some extent by the PFAA profile in 291 

these layers which contain the more soluble, shorter chain compounds of PFBA (C4) and 292 
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PFPA (C5). These compounds are absent from the adjacent snow layers above (e.g. 2000 to 293 

2004). Nonetheless, higher concentrations of ΣPFAAs occur in the uppermost snow layers 294 

(e.g. 2005-2007), which are ~5-fold higher than concentrations in the middle layers 295 

(2000-2004), with PFOA concentrations increasing markedly from 2005 to 2007 (Figure 2b). 296 

This later increase in the uppermost snow layers may be due to the growing influence of 297 

atmospheric perfluoro-precursor sources in Asia,51 which will particularly affect PFAA levels 298 

in the Mt Zuoqiupu area given its location in south-eastern Tibet. 299 

 300 

Annual deposition fluxes, calculated on the basis of measured concentrations of individual 301 

PFAAs and the annual water equivalent accumulation are shown in Table SI-15. The Mt. 302 

Muztagata snow core showed higherΣPFAA deposition fluxes, with the maximum of 58755 303 

fg cm-2 yr-1 (Table SI-15) whereas deposition fluxes of ΣPFAAs for the Mt. Zuoqiupu snow 304 

core ranged from 13575 to 41982 fg cm-2 yr-1 (Table SI-15). The annual water equivalent 305 

accumulation for the Mt. Zuoqiupu snow core was 2~3 times higher than that of Mt. 306 

Muztagata (Table SI-1). However, due to the markedly lower PFAA concentrations in Mt. 307 

Zuoqiupu snow (Table SI-8 and 9) then the deposition fluxes were therefore lower and 308 

support the argument that different source regions influence the PFAA concentrations rather 309 

than simple differences in snow accumulation rates. The deposition fluxes of ΣPFAAs in 310 

these Tibetan glacier snow cores are similar to those reported for the Devon Island icecap,10 311 

but lower than Colle Gnifetti in the Italian Alps16 and other depositional fluxes observed in 312 

temperate areas (Table SI-15) .42, 44 313 

PFAA composition in snow. The dominant PFAAs in the Mt. Muztagata glacier snow core 314 

were PFOS followed by PFOA and PFPA, (Figure 2a), contributing 34% (27−45%), 26% 315 

(21-32%) and 22% (13-37%) to the ΣPFAAs, respectively. Short chain-PFAAs, such PFBA 316 

and PFBS were not detected in the Muztagata snow core, while the longer chain PFAAs 317 

(Σ(C10-PFDA, C11-PFUnDA and  C12-PFDoDA), comprised <8% of the total PFAAs. In the 318 

Mt. Zuoqiupu glacier snow core, PFOA was the dominant species (Figure 2b), comprising 77% 319 

(38-100%) of the ΣPFAAs, followed by PFBA (average: 18%, range: 0-27%) and PFPA 320 

(average: 5%, range:0-16%). Interestingly PFOS was found at significant concentrations in 321 

the entire snow core for Mt Muztagata (61.4-347 pg/L) but was below detection limits for Mt 322 

Zuoqiupu. This reflects the older time-series at Muztagata (1980-1999 snow accumulation 323 

period) and the influence of upwind Eurasian source regions prior to the significant reduction 324 
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in POSF-based chemicals production in the early 2000s.52 Low levels of PFOS (25–64 pg/L) 325 

were detected in the surface/fresh snow sampled at Lake Namco, located in the central region 326 

of the TP, and are broadly comparable to concentrations recently measured in Arctic snow 327 

(see Table 1).  The PFAA profile in the surface snow of Lake Namco was dominated by the 328 

C4-C7 PFCAs, particularly PFBA which displays the highest concentrations (913-2569 pg/L) 329 

for all the PFCs reported in this study (see Figure 3). The average proportion of PFA species 330 

in Namco surface snow was as follows: PFBA (61%), PFHpA (17%), PFPA (7%), PFHxA 331 

(4%), PFOA (5%), and PFNA (2%). Given snow samples were collected relatively recently 332 

(December 2010), then the dominance of the shorter chain compounds (e.g. PFBA) may be 333 

attributed to the shift in manufacturing towards shorter chain products such as the volatile 334 

fluorotelomer alcohol, 4:2FTOH, recently measured in ambient air in India.51, 53  335 

 336 
Sources of PFAAs to the TP. Unlike the marine environment of the Arctic where surface 337 

ocean currents play an important role in providing PFAAs to the Polar environment, the 338 

Tibetan Mountain glaciers will receive PFAA contaminants solely from the atmosphere. The 339 

Tibetan PFAAs could therefore arise from: i) the atmospheric oxidation of gas-phase volatile 340 

precursors,54 followed by dry and wet deposition; the latter driven largely by snowfall; 2) the 341 

direct transport of gas-phase and/or aerosol-associated PFAAs.55 In this study, particulate 342 

matter in the snow was subject to PFAA analysis. Particle concentrations in the Namco snow 343 

samples were relatively high with concentrations of ~100mg/L (see Table SI-2) while 344 

concentrations in the Mt. Zuoqiupu snow core (<10 mg/L) were lower than those of Mt. 345 

Muztagata (<50 mg/L). However, in all cases, PFAAs were not detectable in the filtered 346 

particles. This is akin to other studies that have reported negligible PFAA concentrations 347 

associated with atmospheric particulate matter collected in the remote ocean atmosphere.33, 56 348 

However, the low particle mass collected from the low-volume samples (2L) in this study 349 

could be responsible for the non-detects reported here. Nonetheless, the non-detects for 350 

particle-bound PFAAs indicate that the majority of PFAAs in the snow are present largely as 351 

a result of direct atmospheric transport in the gas-phase and/or atmospheric photooxidation of 352 

volatile precursors (i.e. FTOHs, fluorotelomer arcylates, olefins and iodides in the case of 353 

perfluorocarboxylic acids). As measurements of gas-phase PFAAs in remote air are rarely 354 

reported or are below the detection limit 57,58, then the atmospheric photooxidation pathway 355 

of neutral precursors probably accounts for the majority of PFAAs measured in contemporary 356 

Tibetan snow. At present it is not clear whether this process occurs in the gas phase with 357 
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subsequent scavenging of the PFAAs by snowfall, or a heterogeneous reaction occurring on 358 

ice-crystal surfaces, or some combination of the two. Air masses over the TP are mainly 359 

dominated by continental air from central Asia/Europe (western Tibet) and maritime air from 360 

the Indian Ocean (southern Tibet). 59 The Mt. Muztagata snow core represents the earlier 361 

accumulation period from 1980 to 1999 and given its location in the western side of the TP 362 

this would account for the dominance of PFOS and PFOA – present in the environment 363 

through a wide variety of products and applications across Europe over this time period.52,60 364 

However, the Mt. Zuoqiupu snow core (1996 to 2007) is dominated by PFOA, with marked 365 

contributions of PFBA and PFPA in the 2005-07 layers. The lack of PFOS in this core likely 366 

indicates the decline in the presence of PFOS (or its precursors) in the atmosphere of the 367 

Northern Hemisphere in recent years, as well as the influence of different source regions 368 

affecting this part of the TP, e.g. sources in south Asia and India. Although PFOS was 369 

detected in snow core samples from Zuoqiupu the relatively high LOD for PFOS prevented 370 

its quantification and reporting. While the phase out of longer chain C8-based fluoro 371 

chemicals maybe gaining momentum globally, both 8:2 FTOH and 10:2 FTOH were still the 372 

dominant compounds in ambient air across Japan, China and India in 2009,51 although, 373 

interestingly, 4:2 FTOH was the most abundant fluorotelomer alcohol measured at sites in 374 

India.51 The dominance of PFBA in the fresh snow at Namco is likely to be attributed to the 375 

photooxidation of 4:2 FTOH with the incursion of air masses from the Indian sub-continent. 376 

This is most relevant during the Indian Monsoon period61 which is a driving force for the 377 

atmospheric transport of pollutants from south Asia to the TP.38 The lack of PFOS as well as 378 

the shorter chain PFSAs in the Mt Zuoqiupu core, and the coincidently low levels of PFOS 379 

observed in the surface snow of Namco, may be due to the relatively lower amounts of 380 

fluorooctane sulfonamide (FOSA/E) and fluorobutane sulfonamide (FBSA/E) precursors in 381 

contemporary Indian air.51 From the study of Li et al51 , the air concentrations of these 382 

chemicals across India were low (aside from several point sources) and fall within the same 383 

ranges observed in contemporary European/North American studies,51 which may account for 384 

the low levels of PFOS observed at Namco and Zuoqiupu.  385 

 386 

As an indicator of related sources, a correlation matrix was undertaken for the PFAA data 387 

from the Mt Muztagata and Mt Zuoqiupu snow cores respectively (Table SI-16 and 17).  388 

Specifically, correlations were high (r>0.80, p<0.01) between PFOS and PFOA for Mt. 389 

Muztagata, moreover, PFBA showed higher correlations (r>0.80, p<0.01) with PFOA and 390 

PFHxA for Mt. Zuoqiupu. This implies that these chemicals arise from similar sources and/or 391 
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have experienced similar precursor oxidation and deposition processes. 392 

 393 

PFAAs are present and have accumulated in mountain snow across Tibet over the last 30 394 

years, although there are clear regional differences across the Plateau in terms of the quantity 395 

of PFAAs deposited and their composition, and this is not solely due to differences in snow 396 

accumulation rates between the two study sites. The evidence here would suggest that 397 

different source regions affect different parts of the TP, with an earlier European signal in the 398 

west and an Indian/south Asian signal in the south and east. PFAA concentrations and 399 

accumulation fluxes have increased over the respective snowcore time series, with the highest 400 

ΣPFAA concentrations in the surface snow (2010) from Namco. The PFA composition at this 401 

site, however, is dominated by the shorter chain PFBA, in marked contrast to the older 402 

accumulated snow at Mts. Muztagata and Zuoqiupu. This reflects the abundance of 4;2 403 

FTOH in air across India and a shift to shorter chain-length chemicals. The presence of PFBA 404 

in snow is in agreement with findings from a snow core study conducted recently in the 405 

European Alps.16 Further monitoring at the Mt. Muztagata site would be useful in order to 406 

determine the contemporary European signal on western Tibet and to assess whether PFAAs 407 

in the snowpack show a shift towards the shorter chain length chemicals. PFASs 408 

accumulation in snow will provide a source of these chemicals to mountain lakes and 409 

catchment headwaters, and studies aimed at quantifying this transfer to freshwater habitats 410 

are now recommended. 411 
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Figure 1 Schematic of air circulation systems and location of the sampling sites 

1. Mt. Muztagata, 2. Namco Lake, 3. Mt. Zuoqiupu
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 1 
Table 1 Comparison of the PFAAs concentrations (pg/L) obtained in this study with data from other remote regions 

time 1980-1999 1996-2007 2010 1996-2006 1996-2008 2006  2002 2004 
site Mt. 

Muztagata 
snow core 

Mt. 
Zuoqiupu 
snow core 

fresh 
snow from 

Namco 

Devon Island 
icecap 

 (Canadian 
Arctic) 

Colle Gnifetti 
snow 

(Swiss/Italian 
Alps) 

Arctic 
snow/sea ice 

Antarctic 
snow 

Precipitation 
of remote 
Canada 

Remote lake 
water, 

Canada 

PFBS ND ND BDL-5   BDL-1500 BDL-49.9   
PFHpS ND ND ND    12.2-219   
PFOS 61.4-346 BDL 25-64.2 1.4-86  BDL-44 17.2-199  50-110 
PFBA BDL BDL-56.2 913-2569  340-1870 BDL-1000 76.6-1112   
PFPA 64.5-142 BDL-49.8 94.5-3502  BDL-210 BDL-66 BDL-203   

PFHxA 22-100 BDL-40.5 63.5-140  60-340 BDL-66 142-678   
PFHPA ND ND 241-982  110-190 BDL-69    
PFOA 40.8-243 37.8-183 68-191 13.1-147 200-630 39-710 114-383 50-300 720-1000 
PFNA 10.3-41.2 BDL-73.4 49.2-90.8 5.0-143 BDL-280 38-220 23.7-114 20-250 300-750 
PFDA 7.9-50 1.2-75 9.2-35.8 BDL-21.8 BDL-240 BDL-280 BDL-111  100-250 

PFUnDA BDL-5.75 ND BDL-18.1 BDL-27.3 ND-180 BDL-120 BDL-263  BDL-200 
PFDoDA BDL-24.1 ND BDL-18.6  BDL-110 BDL-75 BDL-189   
PFTriDA ND ND ND   BDL-500 BDL-485   
PFTeDA ND ND ND   BDl-81 BDL-143   
FOSA ND ND ND   BDL-26    
Sum 193-927 37.3-370 1875-4236 20.8-436 650-4060 220-8100 388-1309   

Reference This study (8) (16) (45) (46) (43) (44) 
 2 
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Figure 2 Time-series and composition profiles of individual PFAAs in Mt. Muztagata glacier (a) and Mt.Zuoqiupu glacier (b)6 
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Figure 3 PFAAs concentrations in fresh snow collected at Namco 11 
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	Sample Extraction. Filtered metwater samples were subject to solid phase extraction (SPE) using Waters Oasis WAX cartridges (150 mg, 6 cm3, 30 mm), akin to methods described elsewhere. 31 Prior to extraction, the samples were spiked with 400 pg absolu...
	Instrument analysis. Detials of the instrumental analytical method has been described in elsewhere.33 Briefly, an HP 1100 HPLC-system (Agilent Technologies) was used with a Synergi Hydro RP C18 80A column (150 × 2 mm, 4 μm, by Phenomenex), combined wi...
	Quality controls and assurance. Recovery of each spiked sample was provided in Table SI-5 and blank values are provided in Table SI-6. Compounds were classified as not detected (ND) when a signal to noise ratio (S/N) was <3. Only PFOA was detected in ...

