55 research outputs found

    Understanding halo and sprite discharges above thunderclouds

    Get PDF
    Abstract only

    Simulaties verklaren reuzenbliksems hoog in de dampkring

    Get PDF
    Sprites, enorme elektrische ontladingen veertig tot negentig kilometer hoog in de atmosfeer, plaatsen de wetenschap al enige tijd voor allerlei vragen.Wanneer ontstaan ze? Hoe snel gaan ze? Waarom is vaak een 'halo' te zien voor deze reuzenbliksems? Onderzoekers Alejandro Luque en Ute Ebert hebben met computersimulaties antwoorden gevonden op deze vragen

    Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic or chaotic states

    Get PDF
    We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate periodic or even chaotic states. A surprising feature is that such fronts also exhibit a universal algebraic phase relaxation. For fronts that generate a periodic state, like those in the Swift-Hohenberg equation or in a Rayleigh-BĂ©nard experiment, this implies an algebraically slow relaxation of the pattern wavelength just behind the front, which should be experimentally testable

    Field of inserted charges during Scanning Electron Microscopy of non-conducting samples

    Get PDF
    Three different approaches to calculating the electric potential in an inhomogeneous dielectric next to vacuum due to a charge distribution built up by the electron beam are investigated. An analytical solution for the electric potential cannot be found by means of the image charge method or Fourier analysis, both of which do work for a homogenous dielectric with a planar interface to vacuum. A Born approximation gives a good approach to the real electric potential in a homogenous dielectric up to a relative dielectric constant of 5. With this knowledge the electric potential of an inhomogenous dielectric is calculated. Also the electric field is calculated by means of a particle-mesh method. Some inhomogeneous dielectric configurations are calculated and their bound charges are studied. Such a method can yield accurate calculations of the electric potential and can give quantitative insight in the charging process. A capacitor model is described to estimate the potential due to the charge build up. It describes the potential build up in the first microseconds of the charging. Thereafter, it seems that more processes have to be taken into account to describe the potential well. This potential can further be used in a macroscopic approach to the collective motion of the electrons described by the Boltzmann transport equations or a derived density model, which can be a feasible alternative approximation to the more commonly used Monte-Carlo simulation of individual trajectories

    The Finite Temperature SU(2) Savvidy Model with a Non-trivial Polyakov Loop

    Full text link
    We calculate the complete one-loop effective potential for SU(2) gauge bosons at temperature T as a function of two variables: phi, the angle associated with a non-trivial Polyakov loop, and H, a constant background chromomagnetic field. Using techniques broadly applicable to finite temperature field theories, we develop both low and high temperature expansions. At low temperatures, the real part of the effective potential V_R indicates a rich phase structure, with a discontinuous alternation between confined (phi=pi) and deconfined phases (phi=0). The background field H moves slowly upward from its zero-temperature value as T increases, in such a way that sqrt(gH)/(pi T) is approximately an integer. Beyond a certain temperature on the order of sqrt(gH), the deconfined phase is always preferred. At high temperatures, where asymptotic freedom applies, the deconfined phase phi=0 is always preferred, and sqrt(gH) is of order g^2(T)T. The imaginary part of the effective potential is non-zero at the global minimum of V_R for all temperatures. A non-perturbative magnetic screening mass of the form M_m = cg^2(T)T with a sufficiently large coefficient c removes this instability at high temperature, leading to a stable high-temperature phase with phi=0 and H=0, characteristic of a weakly-interacting gas of gauge particles. The value of M_m obtained is comparable with lattice estimates.Comment: 28 pages, 5 eps figures; RevTeX 3 with graphic

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Simulaties verklaren reuzenbliksems hoog in de dampkring

    No full text
    Sprites, enorme elektrische ontladingen veertig tot negentig kilometer hoog in de atmosfeer, plaatsen de wetenschap al enige tijd voor allerlei vragen.Wanneer ontstaan ze? Hoe snel gaan ze? Waarom is vaak een 'halo' te zien voor deze reuzenbliksems? Onderzoekers Alejandro Luque en Ute Ebert hebben met computersimulaties antwoorden gevonden op deze vragen

    Streamers, sprites, leaders, lightning: from micro- to macroscales

    No full text
    'Streamers, sprites, leaders, lightning: from micro- to macroscales' was the theme of a workshop in October 2007 in Leiden, The Netherlands; it brought together researchers from plasma physics, electrical engineering and industry, geophysics and space physics, computational science and nonlinear dynamics around the common topic of generation, structure and products of streamer-like electric breakdown. The present cluster issue collects relevant papers within this area; most of them were presented during the workshop. We here briefly discuss the research questions and very shortly review the papers in the cluster issue, and we also refer to a few recent papers in this and other journals
    • 

    corecore