1,402 research outputs found

    Dark-time decay of the retrieval efficiency of light stored as a Rydberg excitation in a noninteracting ultracold gas

    No full text
    We study the dark-time decay of the retrieval efficiency for light stored in a Rydberg state in an ultracold gas of 87^{87}Rb atoms based on electromagnetically induced transparency (EIT). Using low atomic density to avoid dephasing caused by atom-atom interactions, we measure a 1/e1/e time of 30 μ\mus for the 80S80S state in free expansion. One of the dominant limitations is the combination of photon recoil and thermal atomic motion at 0.2 μ\muK. If the 1064-nm dipole trap is left on, then the 1/e1/e time is reduced to 13 μ\mus, in agreement with a model taking differential light shifts and gravitational sag into account. To characterize how coherent the retrieved light is, we overlap it with reference light and measure the visibility VV of the resulting interference pattern, obtaining V>90%V> 90\% for short dark time. Our experimental work is accompanied by a detailed model for the dark-time decay of the retrieval efficiency of light stored in atomic ensembles. The model is generally applicable for photon storage in Dicke states, such as in EIT with Λ\Lambda-type or ladder-type level schemes and in Duan-Lukin-Cirac-Zoller single-photon sources. The model includes a treatment of the dephasing caused by thermal atomic motion combined with net photon recoil, as well as the influence of trapping potentials. It takes into account that the signal light field is typically not a plane wave. The model maps the retrieval efficiency to single-atom properties and shows that the retrieval efficiency is related to the decay of fringe visibility in Ramsey spectroscopy and to the spatial first-order coherence function of the gas.Comment: List of changes: (i) The role of separable and entangled states was clarified. In the process, a new appendix C was added. (ii) More detail was added in the supplemental material in sections II.E and II.F, that discuss the relation to Ramsey spectroscopy and to the spatial coherence function. (iii) A new figure 1 was added. (iv) Various smaller revisions were mad

    Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Full text link
    A liquid isooctane (C8_{8}H18_{18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm ×\times 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data Acquisition System (XDAS) with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests we have studied dose rate and energy dependences, and signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5 Gy min1^{-1}, and energy dependence lower than 2.1 % up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm3^{3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. Signal reproducibility was within a 2% during the test period (around three months). The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio

    Proposal for a CFT interpretation of Watts' differential equation for percolation

    Full text link
    G. M. T. Watts derived that in two dimensional critical percolation the crossing probability Pi_hv satisfies a fifth order differential equation which includes another one of third order whose independent solutions describe the physically relevant quantities 1, Pi_h, Pi_hv. We will show that this differential equation can be derived from a level three null vector condition of a rational c=-24 CFT and motivate how this solution may be fitted into known properties of percolation.Comment: LaTeX, 20p, added references, corrected typos and additional content

    SLE local martingales in logarithmic representations

    Full text link
    A space of local martingales of SLE type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases not much is known about this representation. The purpose of this article is to exhibit examples of representations where L_0 is not diagonalizable - a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation with the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE(kappa=6) describing the exploration path in critical percolation, and its relation with the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of kappa, thus at all central charges and not only at specific rational values.Comment: 40 pages, 7 figures. v3: completely rewritten, new title, new result

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Acquired demyelination but not genetic developmental defects in myelination leads to brain tissue stiffness changes

    Get PDF
    Changes in axonal myelination are an important hallmark of aging and a number of neurological diseases. Demyelinated axons are impaired in their function and degenerate over time. Oligodendrocytes, the cells responsible for myelination of axons, are sensitive to mechanical properties of their environment. Growing evidence indicates that mechanical properties of demyelinating lesions are different from the healthy state and thus have the potential to affect myelinating potential of oligodendrocytes. We performed a high-resolution spatial mapping of the mechanical heterogeneity of demyelinating lesions using atomic force microscope-enabled indentation. Our results indicate that the stiffness of specific regions of mouse brain tissue is influenced by age and degree of myelination. Here we specifically demonstrate that acquired acute but not genetic demyelination leads to decreased tissue stiffness, which could influence the remyelination potential of oligodendrocytes. We also demonstrate that specific brain regions have unique ranges of stiffness in white and grey matter. Our ex vivo findings may help the design of future in vitro models to mimic the mechanical environment of the brain in healthy and diseased states. The mechanical properties of demyelinating lesions reported here may facilitate novel approaches in treating demyelinating diseases such as multiple sclerosis

    Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Get PDF
    Background: Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes

    Fusion algebra of critical percolation

    Full text link
    We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.Comment: 12 pages, v2: comments and references adde

    Quantum Zeno Effect and Light-Dark Periods for a Single Atom

    Get PDF
    The quantum Zeno effect (QZE) predicts a slow-down of the time development of a system under rapidly repeated ideal measurements, and experimentally this was tested for an ensemble of atoms using short laser pulses for non-selective state measurements. Here we consider such pulses for selective measurements on a single system. Each probe pulse will cause a burst of fluorescence or no fluorescence. If the probe pulses were strictly ideal measurements, the QZE would predict periods of fluorescence bursts alternating with periods of no fluorescence (light and dark periods) which would become longer and longer with increasing frequency of the measurements. The non-ideal character of the measurements is taken into account by incorporating the laser pulses in the interaction, and this is used to determine the corrections to the ideal case. In the limit, when the time between the laser pulses goes to zero, no freezing occurs but instead we show convergence to the familiar macroscopic light and dark periods of the continuously driven Dehmelt system. An experiment of this type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.

    Ultra-High Energy Neutrino Fluxes: New Constraints and Implications

    Full text link
    We apply new upper limits on neutrino fluxes and the diffuse extragalactic component of the GeV gamma-ray flux to various scenarios for ultra high energy cosmic rays and neutrinos. As a result we find that extra-galactic top-down sources can not contribute significantly to the observed flux of highest energy cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce cosmic rays via interactions with relic neutrinos is practically ruled out if cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
    corecore