We present an explicit conjecture for the chiral fusion algebra of critical
percolation considering Virasoro representations with no enlarged or extended
symmetry algebra. The representations we take to generate fusion are countably
infinite in number. The ensuing fusion rules are quasi-rational in the sense
that the fusion of a finite number of these representations decomposes into a
finite direct sum of these representations. The fusion rules are commutative,
associative and exhibit an sl(2) structure. They involve representations which
we call Kac representations of which some are reducible yet indecomposable
representations of rank 1. In particular, the identity of the fusion algebra is
a reducible yet indecomposable Kac representation of rank 1. We make detailed
comparisons of our fusion rules with the recent results of Eberle-Flohr and
Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of
indecomposable representations of rank 3. Our fusion rules are supported by
extensive numerical studies of an integrable lattice model of critical
percolation. Details of our lattice findings and numerical results will be
presented elsewhere.Comment: 12 pages, v2: comments and references adde