83 research outputs found

    Hubble Space Telescope: Goddard high resolution spectrograph instrument handbook. Version 2.1

    Get PDF
    The Goddard High Resolution Spectrograph (GHRS) is an ultraviolet spectrometer which has been designed to exploit the imaging and pointing capabilities of the Hubble Space Telescope. It will obtain observations of astronomical sources with greater spectral, spatial and temporal resolution than has been possible with previous space-based instruments. Data from the GHRS will be applicable to many types of scientific investigations, including studies of the interstellar medium, stellar winds, chromospheres and coronae, the byproducts and endproducts of stellar evolution, planetary atmospheres, comets, and many kinds of extragalactic sources. This handbook is intended to introduce the GHRS to potential users. The main purpose is to provide enough information to explore the feasibility of possible research projects and to plan, propose and execute a set of observations. An overview of the instrument performance, which should allow one to evaluate the suitability of the GHRS to specific projects, and a somewhat more detailed description of the GHRS hardware are given. How observing programs will be carried out, the various operating modes of the instrument, and the specific information about the performance of the instrument needed to plan an observation are discussed

    Changes in the stress tolerance of two Mojave Desert perennial shrubs after eight years of growth in elevated carbon dioxide

    Full text link
    Global climate change is a significant issue facing modern society. Potential changes include increased atmospheric CO2 concentrations, increased temperature, altered precipitation patterns, and increased nitrogen deposition. The Nevada Desert FACE (Free Air Carbon dioxide Enrichment) Facility (NDFF) examines the effects of increased atmospheric CO2 concentration in an arid ecosystem. The effects of elevated CO2 on plants include increased growth rates and stress tolerance. This study examined the mechanistic changes in drought tolerance of two dominant Mojave Desert shrubs ( Larrea tridentata and Ambrosia dumosa) grown in elevated (550 mumol mol-1) or ambient (380 mumol mol -1) CO2 concentrations. Previous studies at this site included photosynthetic, water potential, and fluorescence investigations. This study added a mechanistic approach, investigating the possible photosynthetic down-regulation and increased drought-tolerance after growth in elevated CO2, including pigment, sugar, and protein analyses. In contrast to past studies, Larrea tridentata plants growing in elevated CO2 exhibited photosynthetic upregulation, but as expected, both species exhibited increased drought tolerance through reduced stomatal conductance, as elevated CO 2 had few effects on sugars, proteins, or protective pigments

    Is macroturbulent broadening in OB Supergiants related to pulsations?

    Full text link
    The spectrum of O and B Supergiants is known to be affected by an important extra line-broadening (usually called macroturbulence) that adds to stellar rotation. Recent analysis of high resolution spectra has shown that the interpretation of this line-broadening as a consequence of large-scale turbulent motions would imply highly super-sonic velocity fields, making this scenario quite improbable. Stellar oscillations have been proposed as a likely alternative explanation. We present first encouraging results of an observational project aimed at investigating the macroturbulentmacroturbulent broadening in O and B Supergiants, and its possible connection with spectroscopic variability phenomena and stellar oscillations: a) all the studied B Supergiants show line profile variations, quantified by means of the first () and third velocity () moments of the lines, b) there is a strong correlation between the peak-to-peak amplitudes of the and variability and the size of the extra-broadening.Comment: 4 pages, 2 figures, 1 table. Proceeding of the IV Helas International Conference: "Seismological challeges for stellar structure". Editors:Teodoro Roca Cort\'es, Pere Pall\'e and Sebasti\'an Jim\'enez Reye

    A Search for Intrinsic Polarization in O Stars with Variable Winds

    Get PDF
    New observations of 9 of the brightest northern O stars have been made with the Breger polarimeter on the 0.9~m telescope at McDonald Observatory and the AnyPol polarimeter on the 0.4~m telescope at Limber Observatory, using the Johnson-Cousins UBVRI broadband filter system. Comparison with earlier measurements shows no clearly defined long-term polarization variability. For all 9 stars the wavelength dependence of the degree of polarization in the optical range can be fit by a normal interstellar polarization law. The polarization position angles are practically constant with wavelength and are consistent with those of neighboring stars. Thus the simplest conclusion is that the polarization of all the program stars is primarily interstellar. The O stars chosen for this study are generally known from ultraviolet and optical spectroscopy to have substantial mass loss rates and variable winds, as well as occasional circumstellar emission. Their lack of intrinsic polarization in comparison with the similar Be stars may be explained by the dominance of radiation as a wind driving force due to higher luminosity, which results in lower density and less rotational flattening in the electron scattering inner envelopes where the polarization is produced. However, time series of polarization measurements taken simultaneously with H-alpha and UV spectroscopy during several coordinated multiwavelength campaigns suggest two cases of possible small-amplitude, periodic short-term polarization variability, and therefore intrinsic polarization, which may be correlated with the more widely recognized spectroscopic variations.Comment: LaTeX2e, 22 pages including 11 tables; 12 separate gif figures; uses aastex.cls preprint package; accepted by The Astronomical Journa

    Optical Structure and Proper-Motion Age of the Oxygen-rich Supernova Remnant 1E 0102-7219 in the Small Magellanic Cloud

    Full text link
    We present new optical emission-line images of the young SNR 1E 0102-7219 (E0102) in the SMC obtained with the HST Advanced Camera for Surveys (ACS). E0102 is a member of the oxygen-rich class of SNRs showing strong oxygen, neon , and other metal-line emissions in its optical and X-ray spectra, and an absence of H and He. The progenitor of E0102 may have been a Wolf-Rayet star that underwent considerable mass loss prior to exploding as a Type Ib/c or IIL/b SN. The ejecta in this SNR are fast-moving (V > 1000 km/s) and emit as they are compressed and heated in the reverse shock. In 2003, we obtained optical [O III], H-alpha, and continuum images with the ACS Wide Field Camera. The [O III] image captures the full velocity range of the ejecta, and shows considerable high-velocity emission projected in the middle of the SNR that was Doppler-shifted out of the narrow F502N bandpass of a previous Wide Field and Planetary Camera 2 image from 1995. Using these two epochs separated by ~8.5 years, we measure the transverse expansion of the ejecta around the outer rim in this SNR for the first time at visible wavelengths. From proper-motion measurements of 12 ejecta filaments, we estimate a mean expansion velocity for the bright ejecta of ~2000 km/s and an inferred kinematic age for the SNR of \~2050 +/- 600 years. The age we derive from HST data is about twice that inferred by Hughes et al.(2000) from X-ray data, though our 1-sigma error bars overlap. Our proper-motion age is consistent with an independent optical kinematic age derived by Eriksen et al.(2003) using spatially resolved [O III] radial-velocity data. We derive an expansion center that lies very close to X-ray and radio hotspots, which could indicate the presence of a compact remnant (neutron star or black hole).Comment: 28 pages, 8 figures. Accepted to the Astrophysical Journal, to appear in 20 April 2006 issue. Full resolution figures are posted at: http://stevenf.asu.edu/figure

    B-type supergiants in the SMC: Rotational velocities and implications for evolutionary models

    Full text link
    High-resolution spectra for 24 SMC and Galactic B-type supergiants have been analysed to estimate the contributions of both macroturbulence and rotation to the broadening of their metal lines. Two different methodologies are considered, viz. goodness-of-fit comparisons between observed and theoretical line profiles and identifying zeros in the Fourier transforms of the observed profiles. The advantages and limitations of the two methods are briefly discussed with the latter techniques being adopted for estimated projected rotational velocities (\vsini) but the former being used to estimate macroturbulent velocities. Only one SMC supergiant, SK 191, shows a significant degree of rotational broadening (\vsini \simeq 90 \kms). For the remaining targets, the distribution of projected rotational velocities are similar in both our Galactic and SMC samples with larger values being found at earlier spectral types. There is marginal evidence for the projected rotational velocities in the SMC being higher than those in the Galactic targets but any differences are only of the order of 5-10 \kms, whilst evolutionary models predict differences in this effective temperature range of typically 20 to 70 \kms. The combined sample is consistent with a linear variation of projected rotational velocity with effective temperature, which would imply rotational velocities for supergiants of 70 \kms at an effective temperature of 28 000 K (approximately B0 spectral type) decreasing to 32 \kms at 12 000 K (B8 spectral type). For all targets, the macroturbulent broadening would appear to be consistent with a Gaussian distribution (although other distributions cannot be discounted) with an 1e\frac{1}{e} half-width varying from approximately 20 \kms at B8 to 60 \kms at B0 spectral types.Comment: 4 figures, 8 pages, submitted to Astronomy and Astrophysic

    Large-scale wind structures in OB supergiants: a search for rotationally modulated H\alpha variability

    Full text link
    We present the results of a long-term monitoring campaign of the H\alpha line in a sample of bright OB-supergiants (O7.5-B9) that aims at detecting rotationally modulated changes potentially related to the existence of large-scale wind structures. A total of 22 objects were monitor ed during 36 nights spread over 6 months in 2001-2002. Coordinated broad-band photometric observations were also obtained for some targets. Conspicuous evidence for variability in H\alpha is found for the stars displaying a feature contaminated by wind emission. Most changes take place on a daily time-scale, although hourly variations are also occasionally detected. Convincing evidence for a cyclical pattern of variability in H\alpha has been found in 2 stars: HD 14134 and HD 42087 (periodic signals are also detected in other stars, but independent confirmation is required). Rotational modulation is suggested from the similarity between the observed recurrence time-scales (in the range 13-25 days) and estimated periods of stellar rotation. We call attention to the atypical case of HD 14134 which exhibits a clear 12.8-d periodicity both in the photometric and in the spectroscopic data sets. This places this object among a handful of early-type stars where one may observe a clear link between extended wind structures and photospheric disturbances. Further modelling may test the hypothesis that azimuthally-extended wind streams are responsible for the patterns of spectral variability in our target stars.Comment: 18 pages, accepted for publication in MNRA

    Bright OB stars in the Galaxy.II. Wind variability in O supergiants as traced by H-alpha

    Full text link
    We investigate the line-profile variability (lpv) of H-alpha for a large sample of O-type supergiants. We used the Temporal Variance Spectrum (TVS) analysis, developed by Fullerton et al 1996 and modified by us to take into account the effects of wind emission. By means of a comparative analysis we put a number of constraints on the properties of the variability as a function of stellar and wind parameters. The results of our analysis show that all the stars in the sample show evidence of significant lpv in H-alpha, mostly dominated by processes in the wind. The variations occur between zero and 0.3 v_inf (i.e., below ~1.5 R_star), in good agreement with the results from similar studies. A comparison between observations and line-profile simulations indicates that for stars with intermediate wind densities the H-alpha variability can be explained by simple models, consisting of coherent or broken shells (blobs) uniformly distributed over the wind volume, with an intrinsic scatter in the maximum density contrast of about a factor of two. For stars at lower and higher wind densities, on the other hand, we found certain inconsistencies between observations and our predictions, most importantly concerning the mean amplitude and the symmetry properties of the TVS. This disagreement might be explained with the presence of coherent large-scale structures, partly confined in a volume close to the star. Interpreted in terms of a variable mass-loss rate, the observed variations of H-alpha indicate changes of 4% with respect to the mean value of M_dot for stars with stronger winds and of 16% for stars with weaker winds. The effect of these variations on the corresponding wind momenta is rather insignificant (<0.16 dex), increasing the local scatter without affecting the Wind Momentum Luminosity Relationship.Comment: 22 pages, 11 figures. Accepted by Astronomy and Astrophysic

    The Atomic Physics Underlying the Spectroscopic Analysis of Massive Stars and Supernovae

    Full text link
    We have developed a radiative transfer code, CMFGEN, which allows us to model the spectra of massive stars and supernovae. Using CMFGEN we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended CMFGEN to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the "Expanding Photosphere Method". We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.Comment: 8 pages, 2 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore