189 research outputs found

    SP Equity Case Study

    Get PDF
    This case involves an entrepreneur who raises a search fund to pursue the acquisition of a software firm. It is intended for the deal structure segment of an entrepreneurial finance course, as it illustrates stages of financing, returns to investors, layering of debt and equity, and valuation, as well as the search/acquisition process. The case is positioned with the entrepreneur having found an “ideal” company to acquire; however, three days prior to closing, he has uncovered some information the seller had been trying to hide. He now needs to decide whether he should continue with the deal

    Cash Conversion Cycle Management in Small Firms Relationships with Liquidity, Invested Capital, and Firm Performance

    Get PDF
    This study investigated the relationship between cash conversion cycle and levels of liquidity, invested capital, and performance in small firms over time. In a sample of 879 small U.S. manufacturing firms and 833 small U.S. retail firms, cash conversion cycle was found to be significantly related to all three of these aspects. Firms with more efficient cash conversion cycles were more liquid, required less debt and equity financing, and had higher returns. The results also indicate that small firm owners/managers may be reactive in managing cash conversion cycle. The study highlights the importance of cash conversion cycle as a proactive management tool for small firm owners

    Aversive Stimuli Drive Drug Seeking in a State of Low Dopamine Tone

    Get PDF
    Background Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). Methods Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in 21 male Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). Results We found that quinine rapidly reduced dopamine signaling on two distinct time scales. We determined that CRF acted in the VTA to mediate this reduction on only one of these time scales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. Conclusions These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity

    THE EFFECT OF REACHING TO AN OVERHEAD GOAL WHILE PERFORMING THE COUNTERMOVEMENT JUMP

    Get PDF
    One potentially simple way to maximize jumping effort and thus intensity is to have athletes jump to and attempt to touch challenging overhead goals during training. The purpose of this study was to compare the effect of jumping with and without the use of an overhead goal. Subjects performed 3 countermovement jumps in conditions with and without an overhead goal. Jump performance was evaluated using a force platform to determine peak ground reaction force, time to takeoff, power, and jump height. Data were evaluated with a two way ANOVA with results demonstrating no significant (p > 0.05) difference between goal conditions for any of the variables assessed and no interaction between goal condition and gender (p > 0.05)

    KINETIC ANALYSIS OF SEVERAL VARIATIONS OF PUSH-UPS

    Get PDF
    Push-ups are a common and practical exercise though the kinetic characteristics of this exercise and its variations have yet to be quantified. This study assessed the peak ground reaction forces (GRF) of push-up variations including the regular push-up and those performed with bent knee, feet elevated on a 30.48 cm box and a 60.96 cm box, hands elevated on a 30.48 cm box and a 60.96 cm box. Peak GRF and peak GRF expressed as a coefficient of subject body mass were obtained with a force platform. Push-ups with the feet elevated produced higher GRF than all other push-up variations (p ≤ 0.05). Push-ups with hands elevated and from the bent knee position produced lower GRF than all other push-up variations (p ≤ 0.05). These data can be used to progress the intensity of push-ups in a program with loads that are quantified as a percentage of body mass

    Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations

    Get PDF
    Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations

    Fit to Race: Identifying the balance, type and sources of knowledge in fitness for Motorsport

    Get PDF
    In Motorsport, due perhaps to a lack of empirical evidence, it is not always clear what fitness training is required and what roles specific fitness components play, particularly outside the elite levels. Consequently, drivers and their trainers are often left to their own devices, placing reliance on anecdotal information. Accordingly, using a large sample of racing drivers, coaches and fitness trainers, the aim of this investigation was to identify the perceived importance and contribution of fitness components, the sources of information used to reach these conclusions and levels of confidence in the views reported. Survey data from 166 drivers (151 males, 15 females) showed that, in general, cardiovascular fitness, upper body strength, coordination and reactions were perceived as being the most important. Data on sources of information used supported the conjecture that training can often be based on “word of mouth”. Despite a fairly high level of confidence in the views expressed, there is clearly a significant opportunity for practitioners working within Motorsport to provide clearer, proven information so that drivers can feel confident that they are training optimally

    Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010

    Get PDF
    Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4–5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at Hyytiälä, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 μg m^−3 and 0.4 μg m^−3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% of OM on average and up to 62% of OM during three periods of transported biomass burning emissions: 26–28 July, 29–30 July, and 8–9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 μg m^−3) and the high biomass burning contributions (1.2 μg m^−3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions

    Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Get PDF
    We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O<sub>3</sub> concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way

    Pesticide Exposure of Residents Living Close to Agricultural Fields in the Netherlands:Protocol for an Observational Study

    Get PDF
    Background: Application of pesticides in the vicinity of homes has caused concern regarding possible health effects in residents living nearby. However, the high spatiotemporal variation of pesticide levels and lack of knowledge regarding the contribution of exposure routes greatly complicates exposure assessment approaches. Objective: The objective of this paper was to describe the study protocol of a large exposure survey in the Netherlands assessing pesticide exposure of residents living close ( Methods: We performed an observational study involving residents living in the vicinity of agricultural fields and residents living more than 500 m away from any agricultural fields (control subjects). Residential exposures were measured both during a pesticide use period after a specific application and during the nonuse period for 7 and 2 days, respectively. We collected environmental samples (outdoor and indoor air, dust, and garden and field soils) and personal samples (urine and hand wipes). We also collected data on spraying applications as well as on home characteristics, participants' demographics, and food habits via questionnaires and diaries. Environmental samples were analyzed for 46 prioritized pesticides. Urine samples were analyzed for biomarkers of a subset of 5 pesticides. Alongside the field study, and by taking spray events and environmental data into account, we developed a modeling framework to estimate environmental exposure of residents to pesticides. Results: Our study was conducted between 2016 and 2019. We assessed 96 homes and 192 participants, including 7 growers and 28 control subjects. We followed 14 pesticide applications, applying 20 active ingredients. We collected 4416 samples: 1018 air, 445 dust (224 vacuumed floor, 221 doormat), 265 soil (238 garden, 27 fields), 2485 urine, 112 hand wipes, and 91 tank mixtures. Conclusions: To our knowledge, this is the first study on residents' exposure to pesticides addressing all major nondietary exposure sources and routes (air, soil, dust). Our protocol provides insights on used sampling techniques, the wealth of data collected, developed methods, modeling framework, and lessons learned. Resources and data are open for future collaborations on this important topic
    corecore