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Archival Report

Aversive Stimuli Drive Drug Seeking in a State
of Low Dopamine Tone
Robert C. Twining, Daniel S. Wheeler, Amanda L. Ebben, Andre J. Jacobsen, Mykel A. Robble,
John R. Mantsch, and Robert A. Wheeler

ABSTRACT
BACKGROUND: Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the
activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the
aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the
subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine
seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the
stress-sensitive peptide, corticotropin releasing factor (CRF).
METHODS: Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of
intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in 21 male
Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration
and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA).
RESULTS: We found that quinine rapidly reduced dopamine signaling on two distinct time scales. We determined
that CRF acted in the VTA to mediate this reduction on only one of these time scales. Further, we found that the
reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in
the VTA during the experience of the aversive stimulus.
CONCLUSIONS: These data demonstrate that stress-induced drug seeking can occur in a terminal environment of
low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity.

Keywords: Addiction, Cocaine, Dopamine, Relapse, Stress, Voltammetry
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Stressful life events are potent modulators of mood and can
trigger a variety of destructive behaviors, including drug abuse
(1). While addiction is a multifaceted disorder, it has been
suggested that aversive life events can promote relapse in
addicts by inducing negative affect and craving (2–5). Like-
wise, drug-associated stimuli evoke a negative affective
state in abstinent cocaine users that is predictive of relapse
(2,4,6). Ultimately these stimuli are thought to promote a spiral
of maladaptive behaviors in which substance abusers,
attempting to remain abstinent, are prompted to correct an
environmentally induced negative affective state through the
resumption of drug use (7–11).

Aversive events and their attendant emotional states most
likely drive drug seeking by impinging upon the mesolimbic
dopamine system, but the manner by which they do this is
poorly understood. In fact, while the evidence is mounting that
negative affect is a critical determinant of the resumption of
drug taking following periods of abstinence, the literature is
conflicted on the basic question of the directionality of the
dopamine response to aversive stimuli (12,13). Electrophysio-
logical and electrochemical studies that measure dopamine
neuron activity and terminal dopamine release, respectively,
commensurate with the immediate sensation and perception
of aversive stimuli routinely characterize rapid reductions in

dopamine signaling in response to aversive stimuli and their
predictors (14–19). This reduction in dopaminergic activity is
reportedly induced, in part, by stress-sensitive neuromodula-
tors such as corticotropin-releasing factor (CRF) (20,21).
Unfortunately, electrophysiological recordings of dopamine
neurons indicate that neither the aversion-induced decrease
in dopamine neuron activity nor the CRF regulation of that
response is uniform (22–25), necessitating an approach that
examines rapid terminal signaling in dopamine neuronal
projection targets.

Little is known about the nature of rapid, aversion-induced
dopamine release patterns in relevant terminal regions. It is
unclear how such stimuli could cause reductions in dopamine
signaling and how decreased dopamine may promote stress-
mediated maladaptive behaviors, like drug seeking. In the
nucleus accumbens (NAc), a critical locus of the reward circuit,
increases and decreases in dopamine concentration selec-
tively activate D1- and D2-receptor–expressing medium spiny
neurons (MSNs), respectively, which have opposing effects on
motivated behavior (26,27). Activation of these distinct circuits
has long been known to differentially regulate a diverse array
of motivated behaviors, including responses to drugs of abuse
(28–33). Therefore, characterizing whether aversive stimuli
increase or decrease NAc dopamine concentration is likely
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essential to determining how stressful life events activate
specific striatal circuitry to cause relapse to drug use. Pre-
viously, we observed that cocaine-predictive stimuli can induce
a negative affective state, while simultaneously reducing
dopamine signaling in the NAc (19). However, the behavioral
impact of either of these observations remains to be tested.
Critical questions of how aversive stimuli negatively regulate
dopamine signaling and whether this mechanism is one that can
lead to drug-seeking-like behaviors in rodents must be
addressed. In these studies, we scrutinized the precise temporal
dynamics of aversion-induced reductions in dopamine signaling,
the regulation by stress-induced CRF release into the ventral
tegmental area (VTA), and the behavioral impact on hedonic
processing and drug seeking. Overall, our findings reveal
temporal complexity in dopamine signaling and the ability of
CRF to regulate dopamine tone and promote drug seeking.

METHODS AND MATERIALS

Subjects

Twenty-one male Sprague-Dawley rats (275–300 g; Harlan
Laboratories, St. Louis, Missouri) were individually housed in a
temperature- and humidity-controlled, Association for Assess-
ment and Accreditation of Laboratory Animal Care accredited
vivarium. Rats were maintained on a 12/12-hour reversed
cycle (lights off at 7 AM) and had ad libitum access (unless
otherwise noted) to water and food (Teklad; Harlan Laborato-
ries). All experimental protocols were approved by the Institu-
tional Animal Care and Use Committee at Marquette University
in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals.

Surgery

All surgical procedures were conducted under ketamine/xyla-
zine (100 mg/kg/20 mg/kg, intraperitoneal) anesthesia. Intraoral
and intrajugular catheter implantations were conducted as
previously described (11). Guide cannulas for microinjections
(26-gauge; Plastics One, Roanoke, Virginia) were implanted
bilaterally immediately above the VTA (anterior-posterior: 25.6;
medial-lateral: 62.2 at 11º angle; dorsal-ventral: 27.0). To
prepare for voltammetric recordings, electrode guide cannulas
were implanted above the NAc shell unilaterally (anterior-
posterior: 11.3; medial-lateral: 61.3), and a silver/silver chloride
reference electrode was placed contralateral to the guide
cannula. Additionally, a combined bipolar stimulating elec-
trode/microinjection guide cannula (Plastics One) was placed
immediately above the ipsilateral VTA, and a guide cannula was
placed above the contralateral VTA. For all surgical procedures,
rats were treated with the anti-inflammatory med-cam (1% oral
suspension) the day of and for 2 days following the surgery to
reduce inflammation and postoperative pain. To maintain
patency, the intraoral and intrajugular catheters were flushed
daily with distilled water (intraoral) or heparinized saline and the
antibiotic cephazolin (intravenous [IV]), respectively.

Microinjections

Microinjectors extended .5 mm from the end of the guide
cannula. Artificial cerebrospinal fluid (aCSF) (.3 mL/min) or the

selective CRF receptor antagonist CP-376395 (.3 mg/.3 mL/min)
was bilaterally injected into the VTA (n 5 6 aCSF, n 5 6
CP-376395). CP-376395 is a selective CRF-R1 antagonist, but
interactions with R2 are likely at this dose. Microinjectors were
left in place for 2 minutes after the injection to allow for
diffusion. In both procedures, quinine delivery was (re)initiated
immediately after the injection.

Voltammetric Recordings

After recovering from surgery, rats were habituated for 2 hours
in the voltammetric recording environment, consisting of a
clear Plexiglas chamber (Med Associates, St. Albans, Vermont)
housed in a custom-designed Faraday cage. The VTA stim-
ulating electrode was harnessed to a rotating commutator
(Crist Instrument Co., Hagerstown, Maryland), and one intrao-
ral cannula was harnessed to a fluid swivel (Instech Labora-
tory, Plymouth Meeting, Pennsylvania) that could receive fluid
from a syringe pump (Razel, St. Albans, Vermont). On the
following day, voltammetric recordings were conducted as
previously described (16). Details of the recording procedure
and analysis are described in Supplement 1. Briefly, a carbon
fiber electrode was lowered into the NAc shell, a fluid line was
attached to the intraoral cannula, and the behavioral session
was initiated. The experiment consisted of a 30-minute base-
line dopamine monitoring phase (phase 1); a 30-minute
quinine delivery period (phase 2); bilateral VTA microinjections;
and a 50-minute postinjection quinine delivery period (phase
3). Throughout the quinine delivery phases, a 6-second
infusion of .2 mL quinine (.001 mmol/L) was delivered approx-
imately every minute.

Voltammetry Data Analysis

Analyte identification details are described in Supplement 1.
Data from each trial (220 sec before and 30 sec postinfusion
onset) were background subtracted using a 1-second block at
the local minima in the 20 seconds before infusion onset. For
each rat, data were averaged across the quinine infusion trials
in the 10 seconds following the initiation of the quinine infusion
period (quinine) compared with the previous 10-second period
(prequinine) and the next 10-second period (postquinine).
The resultant current changes over time were analyzed for
dopamine changes using principle component regression. For
all rats (n 5 12), reductions in naturally occurring (non-time-
locked) dopamine tone were quantified and analyzed by
comparing the first 5 trials (early) with trials 11 to 15 (middle)
and the last 5 trials (late) in the prequinine period, 10 seconds
before quinine infusion, using a repeated measures analysis of
variance (ANOVA). Significant changes in dopamine concen-
tration over time, time-locked to the quinine infusion, were
evaluated using two within-subjects repeated measures
ANOVAs varying phase (baseline, quinine, and quinine 1 drug
[aCSF or CP-376395]) 3 period (prequinine, quinine, post-
quinine). When significant main or interactive effects were
detected, all pairwise comparisons were made with Tukey’s
post hoc tests for multiple comparisons with alpha set at .05.

Dopamine release events occurred independent of any
applied stimuli or experimenter controlled behavioral action
in the baseline period. To determine how aversive stimuli
affected the likelihood of high concentration dopamine release
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events, every 100-msec sample on every trial for each rat was
time-stamped if its concentration was 40 nmol/L or higher.
This threshold is within the range of affinities for high-affinity
D1 receptors and is the approximate average value of
spontaneous dopamine release events (34,35). From this
characterization, transient frequency and amplitude were
quantified and analyzed. A two-way ANOVA was used to
identify main effects of period (quinine versus postquinine) and
drug (aCSF vs. CP-376395). Tukey’s post hoc tests for multi-
ple comparisons were used to identify significant differences
within period and drug. In all cases, the alpha level for
significance was .05. Statistical comparisons were made using
commercially available software (Statistica; StatSoft, Tulsa,
Oklahoma).

Taste Reactivity Data Analysis

Taste reactivity was analyzed in a frame-by-frame analysis
using digital video recorded on the test day in aCSF- and CP-
376395-injected rats (n = 5 in each group). Appetitive and
aversive taste reactivity was counted in the prequinine and
quinine periods using the technique of Grill and Norgren (36).
Mouth movements that matched the triangle shape for a
duration exceeding 90 msec were counted as aversive.
These criteria excluded all neutral and ingestive mouth
movements, which were counted separately. Instances in
which the tongue protruded and crossed the midline were
counted as appetitive. The remaining licking behavior was
counted as neutral licking. Statistical analyses of all behav-
ioral data were performed using commercially available
software (Statistica).

Self-Administration and Reinstatement

Mildly food-restricted rats (15–18 g/day) were trained to press
a lever for sucrose pellets. Upon acquisition of lever pressing
(�3–5 days), intraoral and intravenous catheters were
implanted as described above. After recovery, rats were food
restricted again and trained to self-administer cocaine (.3 mg/
.2 mL/infusion, IV) on a fixed-ratio 1 schedule in computer-
interfaced operant conditioning chambers enclosed in sound-
attenuating cubicles (Med Associates). When the cocaine
session began, a house light illuminated the chamber, and a
cue light located above the active lever signaled cocaine
availability. Each cocaine infusion was accompanied by turn-
ing off the house light and cue light, and a time-out period
lasting 20 sec, during which the lever remained extended and
responses were recorded but yielded no reinforcement.
Responding on a second inactive lever was also recorded.
After the time-out period, the house light and cue light were
turned on and signaled cocaine availability. Self-administration
sessions occurred in a series of four experimenter-controlled
6-day cycles consisting of 3 days of cocaine self-
administration and 3 days without cocaine in the home cage.
After the third cycle, all rats received VTA cannulation surgery
and began their fourth cycle after 2 weeks of recovery. Each
daily cocaine session ended when rats achieved a fixed
maximum number of cocaine infusions (25 infusions for the
first 9 days of access before VTA cannulation and 30 infusions
for the last three cocaine sessions following VTA cannulation).
Extinction consisted of daily 2-hour sessions during which

each lever press resulted in a saline infusion but no cue light
signaling or cocaine delivery. Once the extinction criterion was
met (,15 active lever responses for the terminal 2-day
average; Table S1 in Supplement 1), each rat was tested for
quinine-induced reinstatement. To prevent the potential con-
found of spontaneous recovery, reinstatement testing was
conducted for each animal the day after extinction criteria
were met. Before each reinstatement session, rats received
intra-VTA microinjections of aCSF (n 5 4) or CP-376395
(n 5 5). Reinstatement sessions began with 15 intraoral
infusions of quinine delivered in the cocaine self-administration
chamber in the same manner as in the previous experiment for
15 minutes. Five minutes after quinine delivery, the levers were
extended and responses were recorded for 1 hour.

Reinstatement Data Analysis

Changes in lever pressing behavior in the first hour of each
session were analyzed using a two-way ANOVA varying the
between-subjects factor of drug (aCSF, CP-376395) 3 the
within-subjects factor of day (extinction, reinstatement, postt-
est). Extinction responding was defined as the last day of
extinction training, and posttest responding was a final
session tested under extinction conditions without quinine
administration. Significant differences in drug-seeking behav-
ior were identified when appropriate by Tukey’s post hoc tests
for multiple comparisons with alpha set at .05.

Histology

After the completion of experimental procedures, all subjects
were euthanized with carbon dioxide. To verify placement of
recording electrodes, small electrolytic lesions were created
by running a current (250 mA) through a stainless steel
electrode placed at the depth at which the recording took
place. Brains were then removed and submerged in 10%
formaldehyde for 14 days. They were then sliced into 40-mm
sections, mounted, stained with .25% thionin, and coverslipped.
Depictions of the cannula and electrode placements from the
voltammetry and reinstatement experiments are presented in
Figures S1 and S2 in Supplement 1, respectively (37).

RESULTS

To probe the temporal dynamics of dopamine reductions
triggered by aversive events, we employed fast-scan cyclic
voltammetry in freely moving rats exposed to brief intraoral
infusions of the unpalatable, bitter taste of quinine. This design
allows for the simultaneous monitoring of an animal’s affective
response coincident with the assessment of terminal dopa-
mine release in the NAc on a subsecond time frame (16,19).
As expected, across the 30-minute test session (1 infusion/min),
quinine exposure evoked the expression of aversive taste
reactivity time-locked to reductions in terminal dopamine
release events (Figure 1B; phase 2, prequinine compared with
quinine/postquinine periods, left and right; Figure S3 in
Supplement 1). Intriguingly, dopamine reductions displayed
two discrete temporal signatures: an immediately apparent,
transient drop during each exposure to quinine, as well as a
longer-lasting reduction in naturally occurring dopamine tone
that emerged only after repeated exposure to quinine. This
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latter effect was quantified as a significant reduction in the
middle (trials 11–15) and late (trials 26–30) trials, compared
with the early (first 5) trials in the prequinine period 10 seconds
before quinine infusion (Figure 1B, right). These data confirm
the ability of aversive stimuli to lower terminal dopamine
concentration and reveal a temporal complexity to this
response.

We next asked whether this aversion-induced drop in
terminal dopamine is influenced by CRF signaling in the VTA
(21). In phase 3, animals received intra-VTA microinjections of
the CRF antagonist CP-376395 (.3 mg/.3 mL/min) or aCSF
(.3 mL/min), while intraoral quinine delivery and fast-scan cyclic
voltammetry recordings continued (Figure 1C, right; Figure S1
in Supplement 1). CRF antagonism in the VTA had no effect on
the ability of quinine to cause a rapid, transient decrease in
dopamine concentration during the quinine intraoral infusion
period (Figure 1C). In contrast, CRF antagonism in the VTA
abolished the inhibitory effect of quinine on non-time-locked
dopamine tone during the prequinine and postquinine periods
(Figure 1C). By averaging across trials, a time-averaged
dopamine concentration can be visualized (Figure 2A,B), along

with the acute reduction that results from quinine infusion. An
attenuation of this response can be visualized following CRF
antagonism (Figure 2D) and quantified following chemometric
analysis (Figure 3A,B).

Changes in terminal dopamine concentration in behaving
animals could be driven by alterations in either the frequency
or amplitude of dopamine release events (38). Here, we
observed that quinine reduced dopamine tone by selectively
reducing release frequency, and this effect was reversed by
blocking CRF receptors in the VTA (Figure 4A). Combined,
these data indicate that upon aversive stimulation, CRF
signaling in the VTA suppresses dopamine tone in the NAc
by modulating the frequency of dopamine release events.

Aversive stimuli potently regulate not only affective state
but also the maladaptive motivated behavior of drug seeking
(3,9,39,40), which is intimately tied to midbrain dopamine
signaling (41,42) and regulated by CRF (43–46). We therefore
tested whether quinine exposure and its attendant drop in NAc
dopamine are sufficient to drive drug seeking in a reinstate-
ment paradigm. Rats were trained to press a lever for an IV
cocaine infusion. After a period of stable self-administration,

Figure 1. Corticotropin-releasing
factor regulation of dopamine sig-
naling during the experience of an
unavoidable aversive stimulus. (A)
Representative fluctuations in natu-
rally occurring dopamine concentra-
tion in the shell of the nucleus
accumbens in a behaving control
(left) and experimental (right) rat
in the baseline phase (phase 1).
(B) Altered dopamine signaling in
response to the intraoral administra-
tion of quinine (phase 2). Reductions
can be observed both acutely in
response to quinine (x axis) and also
broadly across trials (y axis, prequi-
nine [Pre Q] period). (B) (far right)
Intraoral delivery of quinine reduced
tonic dopamine concentration mea-
sured across trials in the prequinine
period of phase 2 (analysis of var-
iance main effect: trials F2,22 5

11.73, p , .01; Tukey’s post hoc,
*p , .05, significant reduction in
middle and late trials compared with
early trials). (C) Quinine-induced
reductions in dopamine signaling
were attenuated by intraventral teg-
mental area injections of the corti-
cotropin-releasing factor antagonist,
CP-376395 (phase 3). aCSF, artifi-
cial cerebrospinal fluid; DA, dopa-
mine; Post Q, postquinine.
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the lever-pressing behavior was extinguished by discontinuing
cocaine availability. After extinction, rats received inescapable
intraoral quinine infusions (1 infusion/min for 15 minutes)
followed by the opportunity to press the lever that previously
provided cocaine. Quinine administration increased lever
pressing only on the active lever (Figure 5A; Figure S4 in
Supplement 1), demonstrating that an aversive stimulus

that suppresses dopamine tone can also reinstate drug-
seeking behavior. Moreover, reinstatement behavior was fully
prevented by blocking CRF receptors in the VTA (Figure 5A;
Figure S2 in Supplement 1). Intriguingly, although CRF antag-
onism blocked reinstatement behavior, it spared the perceived
aversive properties of quinine, as indicated by the persis-
tent expression of aversive taste reactivity (Figure 5B). Taken

Figure 2. Time-averaged dopa-
mine concentration change during
quinine infusion and following corti-
cotropin-releasing factor receptor
blockade. Two-dimensional color
representations of cyclic voltam-
metric data collected for 50 seconds
around quinine infusions, averaged
across trials for each phase of
the experiment. The ordinate is the
applied voltage (Eapp) and the
abscissa is time (seconds [s]).
Changes in current at the carbon
fiber electrode are indicated in color.
In phase 2, quinine infusion redu-
ced the time-averaged dopamine
concentration in control (A) and
experimental (B) animals. (C) This
reduction persisted in rats that
received artificial cerebrospinal fluid
(aCSF) infusions bilaterally into the
ventral tegmental area. (D) Bilateral
infusions of the corticotropin-releas-
ing factor antagonist CP-376395
attenuated this reduction. Vertical
dashed lines indicate time points in
which cyclic voltammograms are
plotted to illustrate the presence of
dopamine (left), its reduction by qui-
nine (center), and the pH change
following intraoral infusion (right).
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Figure 3. Intraoral delivery of the
aversive taste, quinine, reduced
dopamine concentration in a corti-
cotropin-releasing factor dependent
manner. Changes in dopamine
(DA) concentration, determined via
principal component analysis, are
plotted in (A) and (B). (A) Quinine
reduced dopamine concentration
significantly from baseline (phase 1)
in artificial cerebrospinal fluid (aCSF)-
injected rats (analysis of variance
period 3 drug interaction; F4,20 5

10.683, p , .001; Tukey’s post hoc,
*p , .05). (B) The quinine-induced
dopamine reduction was attenuated
in CP-376395-injected rats (analysis
of variance period 3 drug interac-
tion; F4,20 5 6.77, p , .01; Tukey’s

post hoc, *p , .05, significant reduction in CP-376395-treated animals only in quinine period). The dopamine reduction was reversed by intraventral tegmental
area injections of CP-376395 but only in the prequinine (Pre-Q) and postquinine (Post-Q) periods in which quinine was not present. Data are presented as
mean 1 SEM.

Quinine Quinine+CP-376395BaselineQuinine Quinine+aCSFBaseline

QuininePre-Q Post-Q QuininePre-Q Post-Q

5 s
5 s

A B
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together, these data demonstrate that an aversive stimu-
lus that suppresses dopamine tone can also reinstate
drug-seeking behavior and both of these responses are
preventable by blocking CRF receptors in the VTA.

DISCUSSION

This report highlights a mechanism by which aversive stimuli
can drive the motivational circuit to induce drug-seeking
behavior. Intraoral infusions of the aversive tastant, quinine,
caused both phasic and tonic reductions in terminal dopamine
signaling (i.e., reductions across seconds and across minutes).
Previous reports have described rapid, phasic, aversion-
induced decreases in dopamine release (16). However, in the
absence of direct aversive stimulation, the transient release
events that comprise a tonic signal also can be time-averaged

over minutes (47). Using this approach, we found that cocaine-
predictive stimuli can induce negative affect while simulta-
neously reducing both phasic and tonic dopamine signaling in
the NAc (19). Interestingly, we observed that the tonic, but not
the phasic, reduction was reversed by blocking CRF receptors
in the VTA. While this manipulation did not affect the perceived
aversive properties of quinine, it did reverse quinine-induced
cocaine seeking, demonstrating that aversive stimuli can drive
drug seeking in a state of low dopamine tone. Additional
studies will be necessary to characterize both the mechanism
and potential behavioral significance of the phasic decrease in
dopamine in response to aversive stimuli.

These findings underscore the need to scrutinize the appa-
rently complex manner by which aversive stimuli act on reward
circuitry to motivate behavior, elevating dopamine signaling in
some situations and decreasing dopamine signaling in others.
For example, aversive electric footshock has been shown to
increase CRF activity in the VTA (45,46), which, in turn, can
increase dopamine neuron activity (25,44,45,48) and reinstate
drug seeking (43,45,46). While these findings appear to be at
odds with the current report, they are consistent with terminal
measures of dopamine signaling using microdialysis that
typically report elevations in dopamine concentration for several
minutes during and after aversive stimulation that promotes dug
seeking (49–52). The current data are provocative because they
demonstrate that aversive stimuli that decrease dopamine
signaling can also drive drug seeking and that both phenomena
are under the control of CRF.

One possible explanation for how increases and decreases in
dopamine signaling could both lead to drug seeking can be
found in the cellular organization of dopamine target regions.
Phenotypically distinct striatal neuron populations are tuned to
be differentially sensitive to either increases or decreases in
dopamine concentration. In the dorsal striatum, low-affinity D1-
receptor-expressing MSNs that comprise the direct motor output
pathway are activated by elevations of dopamine that promote
voluntary movement. Correspondingly, high-affinity D2-receptor-
expressing MSNs, comprising the indirect motor output path-
way, are inhibited by high dopamine tone but are sensitive to,
and activated by, phasic pauses in dopamine that suppress
behavior [for review, see (26)]. There is mounting evidence that
this organization is paralleled to a significant degree in the ventral
striatum. In the NAc, phasic increases in dopamine signaling
activate low-affinity dopamine receptor-expressing MSNs that
promote reward learning. Conversely, decreases in dopamine
signaling activate high-affinity dopamine receptor-expressing
MSNs and promote aversion (27,30,53). In the current studies,
quinine likely engaged the latter circuit, serving as an aversive
environmental stressor that decreased dopamine signaling in a
CRF-dependent manner and promoted drug seeking. Other
ethologically relevant environmental stimuli may increase dop-
amine signaling in the NAc and could lead to the same
behavioral result by engaging different circuitries.

NAc dopamine signaling has been heavily implicated in the
mechanisms that promote addiction. NAc dopamine is essen-
tial for reward-related learning (54) and the proper responses
to incentive cues (55), supporting the idea that dopamine
signaling provides incentive for or stamps in the motivational
value of reinforcing stimuli (42) and contributes significantly
toward compulsive drug seeking (41,56). Accepting this, it may

BA

Figure 4. Quinine reduced the frequency of dopamine release events.
(A) The aversive quinine stimulus reduced dopamine transient frequency in
the period following the intraoral infusion, and this effect was reversed by
the corticotropin-releasing factor antagonist [artificial cerebrospinal fluid
(aCSF) baseline compared with aCSF postquinine (F1,10 5 10.21, Tukey
post hoc, *p , .05]. (B) The quinine infusion had no effect on release
amplitude during this same period (F1,10 5 .75, p . .05). Data are presented
as mean 1 SEM.

Figure5. Motiv-
ational processes,
but not hedonic
expression, were
regulated by corti-
cotropin-releasing
factor. (A) Follow-
ing extinction (Ext),
intraoral infusions
of quinine caused
cocaine seeking in
the reinstatement
test (Rein) in artifi-
cial cerebrospinal
fluid (aCSF)-trea-
ted rats, an effect
that was reversed
by intraventral teg-
mental area injec-

tions of CP-376395 (analysis of variance drug 3 day interaction; F2,16 5

5.83, p , .05; Tukey’s post hoc, *p , .05). (B) Intraoral delivery of the
aversive taste, quinine, caused the expression of aversive taste reactivity in
aCSF-treated rats. This effect was not altered by intraventral tegmental area
injections of CP-376395 (t1,9 5 .98, p . .05). Data are presented as mean 1

SEM. Post, postquinine.
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be intuitive to imagine dopamine-elevating stimuli causing
drug seeking but less so to imagine how aversive stimuli that
decrease dopamine signaling accomplish this. However, some
of the earliest theories of substance abuse suggested that drug
withdrawal acts through negative reinforcement mechanisms to
promote relapse in substance abusers attempting to remain
abstinent (57–59). Although subsequent tests of these theories
questioned whether acute withdrawal could contribute to a
disorder characterized by chronic relapse following extended
periods of drug abstinence (60–63), negative reinforcement
mechanisms clearly have a role. The host of neuroadaptations
that accompany chronic drug use and promote reward insensi-
tivity and tolerance (7,56,64–66) could make the sensitivity to
environmental stressors an even more important factor in
promoting relapse in drug-abstinent populations. In fact, even
moment-to-moment cocaine self-administration appears to
involve negative reinforcement learning mediated by striatal
dopamine signaling. As dopamine concentration falls, self-
administration reliably resumes and animals titrate cocaine intake
to maintain the desired brain dopamine concentration (67,68).
During self-administration, animals might learn to respond to
avoid a state of lowered dopamine, and the product of this
negative reinforcement learning could be subsequently engaged
by aversive stimuli that lower dopamine tone. The current report
identifies a potential dopaminergic mechanism of this aversive
motivation that involves CRF, a stress-activated neuromodulator.
Aversive stimuli reduce dopamine signaling, engaging this
mechanism and its attendant emotional states (e.g., negative
affect or craving) in the absence of drug availability. Indeed, the
current findings suggest that substance abusers learn to correct
stress-induced decreases in dopamine signaling in the most
efficient manner by self-administering cocaine.
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