78 research outputs found

    Using molecular diet analysis to inform invasive species management: A case study of introduced rats consuming endemic New Zealand frogs

    Get PDF
    The decline of amphibians has been of international concern for more than two decades, and the global spread of introduced fauna is a major factor in this decline. Conservation management decisions to implement control of introduced fauna are often based on diet studies. One of the most common metrics to report in diet studies is Frequency of Occurrence (FO), but this can be difficult to interpret, as it does not include a temporal perspective. Here, we examine the potential for FO data derived from molecular diet analysis to inform invasive species management, using invasive ship rats (Rattus rattus) and endemic frogs (Leiopelma spp.) in New Zealand as a case study. Only two endemic frog species persist on the mainland. One of these, Leiopelma archeyi, is Critically Endangered (IUCN 2017) and ranked as the world\u27s most evolutionarily distinct and globally endangered amphibian (EDGE, 2018). Ship rat stomach contents were collected by kill-trapping and subjected to three methods of diet analysis (one morphological and two DNA-based). A new primer pair was developed targeting all anuran species that exhibits good coverage, high taxonomic resolution, and reasonable specificity. Incorporating a temporal parameter allowed us to calculate the minimum number of ingestion events per rat per night, providing a more intuitive metric than the more commonly reported FO. We are not aware of other DNA-based diet studies that have incorporated a temporal parameter into FO data. The usefulness of such a metric will depend on the study system, in particular the feeding ecology of the predator. Ship rats are consuming both species of native frogs present on mainland New Zealand, and this study provides the first detections of remains of these species in mammalian stomach contents

    Changes in body posture alter plasma nitrite but not nitrate concentration in humans

    Get PDF
    PURPOSE: This study evaluated the change (Δ) in plasma volume (PV), nitrate [NO3-], and nitrite [NO2-] concentration following changes in posture in the presence and absence of elevated plasma [NO3-] and [NO2-] METHODS: Fourteen healthy participants completed two trials that were preceded by either supplementation with NO3--rich beetroot juice (BR; total of ∼31 mmol NO3-) or no supplementation (CON). Both trials comprised 30 min of lying supine followed by 2 min of standing, 2 min of sitting and 5 min of sub-maximal cycling. Measurements of plasma [NO3-] and [NO2-] were made by gas-phase chemiluminescence and ΔPV was estimated using the Dill and Costill method.RESULTS: Plasma [NO2-] decreased from baseline (CON: 120 ± 49 nM, BR: 357 ± 129 nM) after lying supine for 30 min (CON 77 ± 30 nM; BR 231 ± 92 nM, both P 0.05). PV increased from baseline during the supine phase before decreasing upon standing, sitting, and exercise in both trials (all

    Beetroot juice versus chard gel: A pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability

    Get PDF
    Dietary supplementation with inorganic nitrate (NO3?) has been shown to induce a multitude of advantageous cardiovascular and metabolic responses during rest and exercise. While there is some suggestion that pharmacokinetics may differ depending on the NO3? source ingested, to the best of our knowledge this has yet to be determined experimentally. Here, we compare the plasma pharmacokinetics of NO3?, nitrite (NO2?), and total nitroso species (RXNO) following oral ingestion of either NO3? rich beetroot juice (BR) or chard gels (GEL) with the associated changes in blood pressure (BP). Repeated samples of venous blood and measurements of BP were collected from nine healthy human volunteers before and after ingestion of the supplements using a cross-over design. Plasma concentrations of RXNO and NO2? were quantified using reductive gas-phase chemiluminescence and NO3? using high pressure liquid ion chromatography. We report that, [NO3?] and [NO2?] were increased and systolic BP reduced to a similar extent in each experimental arm, with considerable inter-individual variation. Intriguingly, there was a greater increase in [RXNO] following ingestion of BR in comparison to GEL, which may be a consequence of its higher polyphenol content. In conclusion, our data suggests that while differences in circulating NO2? and NO3? concentrations after oral administration of distinct NO3?-rich supplementation sources are moderate, concentrations of metabolic by-products may show greater-than-expected variability; the significance of the latter observation for the biological effects under study remains to be investigated

    The effects of two different doses of ultraviolet-A light exposure on nitric oxide metabolites and cardiorespiratory outcomes

    Get PDF
    PURPOSE: The present study investigated different doses of ultraviolet-A (UV-A) light on plasma nitric oxide metabolites and cardiorespiratory variables.METHODS: Ten healthy male participants completed three experimental conditions, 7 days apart. Participants were exposed to no light (CON); 10 J cm2 (15 min) of UV-A light (UVA10) and 20 J cm2 (30 min) of UV-A light (UVA20) in a randomized order. Plasma nitrite [NO2-] and nitrate [NO3-] concentrations, blood pressure (BP), and heart rate (HR) were recorded before, immediately after exposure and 30 min post-exposure. Whole body oxygen utilization ([Formula: see text]), resting metabolic rate (RMR) and skin temperature were recorded continuously.RESULTS: None of the measured parameters changed significantly during CON (all P?>?0.05). [Formula: see text] and RMR were significantly reduced immediately after UVA10 (P??0.05). Immediately after exposure to UVA20, plasma [NO2-] was higher (P?=?0.014) and [Formula: see text] and RMR tended to be lower compared to baseline (P?=?0.06). There were no differences in [NO2-] or [Formula: see text] at the 30 min time point in any condition. UV-A exposure did not alter systolic BP, diastolic BP or MAP (all P?>?0.05). UV-A light did not alter plasma [NO3-] at any time point (all P?>?0.05).CONCLUSIONS: This study demonstrates that a UV-A dose of 20 J cm2 is necessary to increase plasma [NO2-] although a smaller dose is capable of reducing [Formula: see text] and RMR at rest. Exposure to UV-A did not significantly reduce BP in this cohort of healthy adults. These data suggest that exposure to sunlight has a meaningful acute impact on metabolic function

    Lower limb ischemic preconditioning combined with dietary nitrate supplementation does not influence time-trial performance in well-trained cyclists

    Get PDF
    OBJECTIVES: Dietary nitrate (NO3-) supplementation and ischaemic preconditioning (IPC) can independently improve exercise performance. The purpose of this study was to explore whether NO3- supplementation, ingested prior to an IPC protocol, could synergistically enhance parameters of exercise.DESIGN: Double-blind randomized crossover trial.METHODS: Ten competitive male cyclists (age 34±6years, body mass 78.9±4.9kg, V⋅O2peak 55±4 mLkgmin-1) completed an incremental exercise test followed by three cycling trials comprising a square-wave submaximal component and a 16.1km time-trial. Oxygen uptake (V⋅O2) and muscle oxygenation kinetics were measured throughout. The baseline (BASE) trial was conducted without any dietary intervention or IPC. In the remaining two trials, participants received 3×5min bouts of lower limb bilateral IPC prior to exercise. Participants ingested NO3--rich gel (NIT+IPC) 90min prior to testing in one trial and a low NO3- placebo in the other (PLA+IPC). Plasma NO3- and nitrite (NO2-) were measured immediately before and after application of IPC.RESULTS: Plasma [NO3-] and [NO2-] were higher before and after IPC in NIT+IPC compared to BASE (P0.4). Performance in the time-trial was similar between trials (BASE 1343±72s, PLA+IPC 1350±75s, NIT+IPC 1346±83s, P=0.98).CONCLUSIONS: Pre-exercise IPC did not improve sub-maximal exercise or performance measures, either alone or in combination with dietary NO3- supplementation

    Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose

    Get PDF
    Nitrate (NO3?) contained in food and beverages can transiently increase nitric oxide (NO) availability following a stepwise reduction to nitrite (NO2?) by commensal bacteria in the oral cavity. We tested the hypothesis that regular ingestion of dietary NO3? would influence the oral microbiome, the capacity to reduce NO3? to NO2? in saliva, and the vascular responses to an acute dose of NO3?. The abundance of bacterial species on the tongue, the availability of NO markers, and vascular function were assessed in 11 healthy males before and after 7 days of supplementation with NO3?-rich beetroot juice and a NO3?-depleted placebo. As expected, saliva and plasma NO2? and NO3? were significantly elevated after NO3? supplementation (all P

    Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: An assessment of the critical difference

    Get PDF
    There is conflicting evidence on whether dietary nitrate supplementation can improve exercise performance. This may arise from the complex nature of nitric oxide (NO) metabolism which causes substantial inter-individual variability, within-person biological variation (CVB), and analytical imprecision (CVA) in experimental endpoints. However, no study has quantified the CVA and CVB of NO metabolites or the factors that influence their production. These data are important to calculate the critical difference (CD), defined as the smallest difference between sequential measurements required to signify a true change. The main aim of the study was to evaluate the CVB, CVA, and CD for markers of NO availability (nitrate and nitrite) in plasma and saliva before and after the ingestion of nitrate-rich beetroot juice (BR). We also assessed the CVB of nitrate-reducing bacteria from the dorsal surface of the tongue. It was hypothesised that there would be substantial CVB in markers of NO availability and the abundance of nitrate-reducing bacteria. Ten healthy male participants (age 25 ± 5 years) completed three identical trials at least 6 days apart. Blood and saliva were collected before and after (2, 2.5 and 3 h) ingestion of 140 ml of BR (∼12.4 mmol nitrate) and analysed for [nitrate] and [nitrite]. The tongue was scraped and the abundance of nitrate-reducing bacterial species were analysed using 16S rRNA next generation sequencing. There was substantial CVB for baseline concentrations of plasma (nitrate 11.9%, nitrite 9.0%) and salivary (nitrate 15.3%, nitrite 32.5%) NO markers. Following BR ingestion, the CVB for nitrate (plasma 3.8%, saliva 12.0%) and salivary nitrite (24.5%) were lower than baseline, but higher for plasma nitrite (18.6%). The CD thresholds that need to be exceeded to ensure a meaningful change from baseline are 25, 19, 37, and 87% for plasma nitrate, plasma nitrite, salivary nitrate, and salivary nitrite, respectively. The CVB for selected nitrate-reducing bacteria detected were: Prevotella melaninogenica (37%), Veillonella dispar (35%), Haemophilus parainfluenzae (79%), Neisseria subflava (70%), Veillonella parvula (43%), Rothia mucilaginosa (60%), and Rothia dentocariosa (132%). There is profound CVB in the abundance of nitrate-reducing bacteria on the tongue and the concentration of NO markers in human saliva and plasma. Where these parameters are of interest following experimental intervention, the CD values presented in this study will allow researchers to interpret the meaningfulness of the magnitude of the change from baseline

    Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria

    Get PDF
    Nitric oxide (NO) can be generated endogenously via NO synthases or via the diet following the action of symbiotic nitrate-reducing bacteria in the oral cavity. Given the important role of NO in smooth muscle control there is an intriguing suggestion that cardiovascular homeostasis may be intertwined with the presence of these bacteria. Here, we measured the abundance of nitrate-reducing bacteria in the oral cavity of 25 healthy humans using 16S rRNA sequencing and observed, for 3.5?h, the physiological responses to dietary nitrate ingestion via measurement of blood pressure, and salivary and plasma NO metabolites. We identified 7 species of bacteria previously known to contribute to nitrate-reduction, the most prevalent of which were Prevotella melaninogenica and Veillonella dispar. Following dietary nitrate supplementation, blood pressure was reduced and salivary and plasma nitrate and nitrite increased substantially. We found that the abundance of nitrate-reducing bacteria was associated with the generation of salivary nitrite but not with any other measured variable. To examine the impact of bacterial abundance on pharmacokinetics we also categorised our participants into two groups; those with a higher abundance of nitrate reducing bacteria (> 50%), and those with a lower abundance (< 50%). Salivary nitrite production was lower in participants with lower abundance of bacteria and these individuals also exhibited slower salivary nitrite pharmacokinetics. We therefore show that the rate of nitrate to nitrite reduction in the oral cavity is associated with the abundance of nitrate-reducing bacteria. Nevertheless, higher abundance of these bacteria did not result in an exaggerated plasma nitrite response, the best known marker of NO bioavailability. These data from healthy young adults suggest that the abundance of oral nitrate-reducing bacteria does not influence the generation of NO through the diet, at least when the host has a functional minimum threshold of these microorganisms

    Spectrum, risk factors and outcomes of neurological and psychiatric complications of COVID-19: a UK-wide cross-sectional surveillance study.

    Get PDF
    SARS-CoV-2 is associated with new-onset neurological and psychiatric conditions. Detailed clinical data, including factors associated with recovery, are lacking, hampering prediction modelling and targeted therapeutic interventions. In a UK-wide cross-sectional surveillance study of adult hospitalized patients during the first COVID-19 wave, with multi-professional input from general and sub-specialty neurologists, psychiatrists, stroke physicians, and intensivists, we captured detailed data on demographics, risk factors, pre-COVID-19 Rockwood frailty score, comorbidities, neurological presentation and outcome. A priori clinical case definitions were used, with cross-specialty independent adjudication for discrepant cases. Multivariable logistic regression was performed using demographic and clinical variables, to determine the factors associated with outcome. A total of 267 cases were included. Cerebrovascular events were most frequently reported (131, 49%), followed by other central disorders (95, 36%) including delirium (28, 11%), central inflammatory (25, 9%), psychiatric (25, 9%), and other encephalopathies (17, 7%), including a severe encephalopathy (n = 13) not meeting delirium criteria; and peripheral nerve disorders (41, 15%). Those with the severe encephalopathy, in comparison to delirium, were younger, had higher rates of admission to intensive care and a longer duration of ventilation. Compared to normative data during the equivalent time period prior to the pandemic, cases of stroke in association with COVID-19 were younger and had a greater number of conventional, modifiable cerebrovascular risk factors. Twenty-seven per cent of strokes occurred in patients 60 years old, the younger stroke patients presented with delayed onset from respiratory symptoms, higher rates of multi-vessel occlusion (31%) and systemic thrombotic events. Clinical outcomes varied between disease groups, with cerebrovascular disease conferring the worst prognosis, but this effect was less marked than the pre-morbid factors of older age and a higher pre-COVID-19 frailty score, and a high admission white cell count, which were independently associated with a poor outcome. In summary, this study describes the spectrum of neurological and psychiatric conditions associated with COVID-19. In addition, we identify a severe COVID-19 encephalopathy atypical for delirium, and a phenotype of COVID-19 associated stroke in younger adults with a tendency for multiple infarcts and systemic thromboses. These clinical data will be useful to inform mechanistic studies and stratification of patients in clinical trials

    Five endometrial cancer risk loci identified through genome-wide association analysis.

    Get PDF
    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.I.T. is supported by Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre. T.H.T.C. is supported by the Rhodes Trust and the Nuffield Department of Medicine. Funding for iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 and C8197/A16565), the US National Institutes of Health (R01 CA128978, U19 CA148537, U19 CA148065 and U19 CA148112), the US Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Susan G. Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. SEARCH recruitment was funded by a programme grant from Cancer Research UK (C490/A10124). Stage 1 and stage 2 case genotyping was supported by the NHMRC (552402 and 1031333). Control data were generated by the WTCCC, and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02; funding for this project was provided by the Wellcome Trust under award 085475. NSECG was supported by the European Union's Framework Programme 7 CHIBCHA grant and Wellcome Trust Centre for Human Genetics Core Grant 090532/Z/09Z, and CORGI was funded by Cancer Research UK. BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014). OCAC is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07) and the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.356
    • …
    corecore