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Abstract
The decline of amphibians has been of international concern for more than two dec‐
ades, and the global spread of introduced fauna is a major factor in this decline. 
Conservation management decisions to implement control of introduced fauna are 
often based on diet studies. One of the most common metrics to report in diet stud‐
ies is Frequency of Occurrence (FO), but this can be difficult to interpret, as it does 
not include a temporal perspective. Here, we examine the potential for FO data de‐
rived from molecular diet analysis to inform invasive species management, using in‐
vasive ship rats (Rattus rattus) and endemic frogs (Leiopelma spp.) in New Zealand as 
a case study. Only two endemic frog species persist on the mainland. One of these, 
Leiopelma archeyi, is Critically Endangered (IUCN 2017) and ranked as the world's 
most evolutionarily distinct and globally endangered amphibian (EDGE, 2018). Ship 
rat stomach contents were collected by kill‐trapping and subjected to three methods 
of diet analysis (one morphological and two DNA‐based). A new primer pair was de‐
veloped targeting all anuran species that exhibits good coverage, high taxonomic 
resolution, and reasonable specificity. Incorporating a temporal parameter allowed 
us to calculate the minimum number of ingestion events per rat per night, providing 
a more intuitive metric than the more commonly reported FO. We are not aware of 
other DNA‐based diet studies that have incorporated a temporal parameter into FO 
data. The usefulness of such a metric will depend on the study system, in particular 
the feeding ecology of the predator. Ship rats are consuming both species of native 
frogs present on mainland New Zealand, and this study provides the first detections 
of remains of these species in mammalian stomach contents.
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1  | INTRODUCTION

Although the decline of amphibians has been of international con‐
cern for more than two decades, the mechanisms of these declines 
are often difficult to identify, or they are difficult to disentangle 
as they may be acting synergistically (Alford, Dixon, & Pechmann, 
2001; Alford & Richards, 1999; Stuart et al., 2004). This is exacer‐
bated by a number of amphibian traits that can make them difficult 
to study, such as spending large portions of time in refugia inacces‐
sible to researchers (e.g., under benthic mud, under deep rock piles), 
emerging from refugia only ephemerally (on both seasonal and daily 
timescales), and often being nocturnal. These and other factors 
have led to an alarming number of species (23%) being placed in the 
IUCN's Data Deficient category, which is much higher than for the 
other comprehensively studied vertebrate groups, birds, and mam‐
mals (Bishop et al., 2012).

Invasive species are considered one of the most important 
threats to global biological diversity (Vitousek, Dantonio, Loope, 
& Westbrooks, 1996; Park, 2004) and are ranked as the third most 
important detrimental factor affecting amphibian populations 
(after habitat modification and pollution; Chanson, Hoffman, Cox, 
& Stuart, 2008). Conservation managers are often tasked with del‐
egating the allocation of resources to the control of invasive spe‐
cies, yet modeling the effects of invasive species on native species 
can be complex (Lohr et al., 2017). Decisions to implement such 
control measures are often based on diet studies (Allen & Leung, 
2012; Park, 2004). Using morphological methods, successful iden‐
tification of prey depends on an array of factors including: prey 
size; the durability of identifiable parts (Major, 1990); the level of 
digestion prey has been subjected to prior to examination (Veron, 
1969); the part of the prey ingested (Day, 1966); and the degree 
of mastication by the predator (Hansson, 1970; Kasper, Reeson, 
Cooper, Perry, & Austin, 2004). For example, ship rats (Rattus rat‐
tus) have often been implicated in the decline of native vertebrate 
fauna worldwide (Towns, Atkinson, & Daugherty, 2006), but the 
level of mastication effected by this group makes prey identifica‐
tion from rodent stomach contents notoriously difficult (Hansson, 
1970).

Molecular diet analysis can provide the additional tools required 
to detect prey in predator gastrointestinal or fecal samples, and the 
diets of a number of rodent species have been investigated using 
DNA (Lopes et al., 2015; Soininen et al., 2009; Zarzoso‐Lacoste, 
Corse, & Vidal, 2013). However, there are many considerations to 
be taken into account when applying DNA‐based diet approaches, 
such as primer choice, target region, the occurrence of false posi‐
tives or false negatives, and assay sensitivity (King, Read, Traugott, 
& Symondson, 2008; Pompanon et al., 2012; Symondson, 2002). A 
particular challenge is that the abundance of predator DNA can mask 
prey DNA detections (Vestheim & Jarman, 2008). To overcome this, 
species‐ or group‐specific primers are often used, targeting the prey 
of interest, rather than employing broad‐range primers that are likely 
to co‐amplify DNA from the predator species. Nevertheless, even if 
predator DNA is not co‐amplified, the relatively high concentration of 

nontarget DNA can still affect assay sensitivity (Juen, Hogendoorn, 
Ma, Schmidt, & Keller, 2012; Nejstgaard et al., 2008).

The focus of many diet studies is the contribution of prey species 
to a given predator species in terms of survival, distribution, ener‐
getics, and other aspects of ecological relevance. In such studies, 
the occurrence and documentation of rare prey species is justifiably 
considered as being of minor importance. However, when the focus 
is on determining the impacts of a predator species on prey species 
of high conservation value, rare occurrences of the prey species can 
still have major implications for prey populations, especially when 
the predator density is high, as is often the scenario where invasive 
species are concerned (Pitt & Witmer, 2007; Pintor, Sih, & Kerby, 
2009). Thus, the relative contribution of a prey species to an inva‐
sive predator species’ diet does not necessarily provide sufficient 
information to make conservation management decisions (Allen & 
Leung, 2012). Or worse, it has the potential to mislead conservation 
practitioners into considering the threat of an invasive species as 
being minor, due to the high‐value prey species in question occurring 
at low frequency in the diet.

One of the most common metrics to report in diet studies (both 
morphological and molecular) is Frequency of Occurrence (FO), 
the number of diet samples in which a prey species is detected, di‐
vided by the total number of diet samples analyzed (Hansson, 1970). 
Although caution is often advised when interpreting FO data, it has 
been used for describing dietary composition (Baker, Buckland, & 
Sheaves, 2014), for ranking the relative importance of various prey 
to a single predator species (Sinclair & Zeppelin, 2002), for compar‐
ing seasonal and regional diet variation of a predator species (Sinclair 
& Zeppelin, 2002), and for comparing diets among predator species 
(Murphy, Keedwell, Brown, & Westbrooke, 2005). However, unless 
additional parameters are incorporated, FO can only ever be a rela‐
tive measure and cannot be used to estimate the potential impact 
of a predator species on the prey population (Greenstone, 1996; 
Szendrei, Greenstone, Payton, & Weber, 2010). This is because FO 
does not take into account time, an important parameter for deter‐
mining predation rates (Dempster, 1960; Jones & Toft, 2006).

Here, we examine the potential of FO data derived from molec‐
ular diet analysis to inform invasive species management, using in‐
vasive ship rats and endemic frogs in New Zealand as a case study.

New Zealand's fauna evolved in the absence of mammals (ex‐
cluding marine mammals and bats; see Clout & Saunders, 1995), and 
there are now 31 introduced mammalian species present as wild or 
feral populations (King, 2005; Parkes & Murphy, 2003), 11 of which 
are known to consume vertebrates, including hedgehogs (Erinaceus 
europaeus), possums (Trichosurus vulpecula), mice (Mus musculus), 
cats (Felis catus), pigs (Sus scrofa), three rat (Rattus) species, and three 
mustelids (Mustela). The New Zealand Government spends over NZD 
$70 million per year on the control of invasive species (Department 
of Conservation, 2016) and relies on ecological research to allocate 
funding to target certain species or geographical areas.

Only four species of native frog remain in New Zealand (all en‐
demic) and only two of those are found on the mainland, in highly 
fragmented remnant populations; Archey's frog (Leiopelma archeyi) 
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and Hochstetter's frog (Leiopelma hochstetteri), which are listed as 
Critically Endangered and Least Concern, respectively (IUCN, 2017). 
Archey's frog is ranked as the world's most evolutionarily distinct 
and globally endangered amphibian (EDGE, 2018). Leiopelma is an 
ancient group that has retained unique and evolutionarily basal 
characteristics not found in most other anuran species (Moffat, 
1974; Stephenson, 1952; Worthy, 1987a) and is of high conserva‐
tion value (Bell, 2010). Archey's frog is an entirely terrestrial species 
(Bell, Daugherty, & Hitchmough, 1998; Daugherty, Maxson, & Bell, 
1982) with intracapsular development, rather than free‐swimming 
tadpoles (Bell & Wassersug, 2003; Stephenson, 1961). Populations 
of Archey's frog have declined dramatically in recent years and, 
although persisting in two regions of New Zealand (Whareorino 
Forest and Coromadel Peninsula), have not shown signs of recov‐
ery (Bell, Carver, Mitchell, & Pledger, 2004; Burns et al., 2018). 
Hochstetter's frog is semi‐aquatic, usually restricted to streams and 
seepages in woodland habitats (Crossland, Mackenzie, & Holzapfel, 
2005; Green & Tessier, 1990; Nájera‐Hillman, Alfaro, O'Shea et al., 
2009; Tessier, Slaven, & Green, 1991), and has a nonfeeding tadpole 
stage (Bell & Wassersug, 2003; Stephenson, 1955). This species has 
the most widespread distribution of the Leiopelma species, being 
found in scattered populations over an extensive area of the North 
Island (Bishop et al., 2013). New Zealand also has three species of 
introduced frogs (Litoria & Ranoidea), two of which are declining in 
their native ranges in Australia and are listed as “Endangered” or 
“Vulnerable” (IUCN, 2017).

The primary threats to Leiopelma are considered to be introduced 
mammalian predators, infectious disease (chytridiomycosis), and 
habitat modification (Bishop et al., 2013), but agents of decline have 
not been conclusively demonstrated (Bishop et al., 2013; Newman 
et al., 2010). Although it seems, from sporadic reports, that ship rats 
may represent the greatest mammalian predation threat to New 
Zealand's frogs (Egeter, Robertson, & Bishop, 2015), the current 
impacts of introduced predators on New Zealand frog populations 
are largely unknown (Baber, Moulton, Smuts‐Kennedy, Gemmell, & 
Crossland, 2006; Bishop et al., 2013; Haigh, Pledger, & Holzapfel, 
2007; Tocher & Pledger, 2005). The evidence to date is largely cir‐
cumstantial: The extinction of three native frog species occurred 
synchronously with the arrival of introduced fauna (in association 
with human settlers), as did the range contraction of the currently 
extant species (Bell, 1994b; Easton et al., 2018; Towns & Daugherty, 
1994; Worthy, 1987b).

Indirect predation studies have been carried out comparing 
Leiopelma abundance in areas where mammalian predators had 
been removed with areas where no predator control had been im‐
plemented (reviewed by Egeter, Robertson et al., 2015). The re‐
sults to date have varied widely in terms of estimating the effects 
of mammalian predators on Leiopelma abundance (see discussion 
section herein). A major difficulty with comparing frog abundance 
estimates is that a difference in abundances may not reflect a differ‐
ence in population size, but only in detection probability, which can 
vary both spatiotemporally and by observer (Buckland, Goudie, & 
Borchers, 2000; Crossland et al., 2005; Nájera‐Hillman, King, Alfaro, 

& Breen, 2009; Yoccoz, Nichols, & Boulinier, 2001). For instance, 
McLennan (1985) calculated a fourfold difference in abundances of 
Hochstetter's frogs based on results collected from different observ‐
ers. Leiopelma are also long‐lived (three generations are estimated 
at 30–45 years for Archey's frog) and produce few eggs (1–22; Bell, 
1985; Bell, 1994a; Bell & Wassersug, 2003), so population monitor‐
ing necessitates very long‐term studies. Even so, invasive species are 
more likely to be generalist predators (Dukes & Mooney, 1999), and 
as such tend to be buffered from fluctuations in the abundance of 
any one prey species (Inayat et al., 2011). Thus, native amphibian 
prey populations would not necessarily be expected to fluctuate in 
tandem with introduced generalist mammals. Diet analysis has the 
potential to provide estimates of the impact of invasive predators 
on prey species, as it does not necessarily require long‐term studies, 
and is not affected by observer bias or frog detection probability 
across habitats.

To examine the potential of FO data derived from molecular 
diet analysis to inform invasive species management, we addressed 
the following objectives: (Bell, 1985, 1994a; Newman et al., 2010) 
design and validate PCR primers for detecting frog DNA (in terms 
of specificity, sensitivity, and taxonomic coverage); compare mor‐
phological and molecular diet analyses for detecting frog remains in 
field‐collected ship rat stomach contents; and assess whether the in‐
corporation of a temporal parameter into FO data can provide more 
informative metrics for making conservation management decisions.

2  | MATERIALS AND METHODS

2.1 | Field study

Four sites were visited within two study areas: Whareorino Forest 
and the Waitakere Ranges. Whareorino Forest is an extensive area 
of unlogged podocarp‐hardwood forest (Pryde, Lettink, & O'Donnell, 
2006) situated in King Country, central North Island, New Zealand, 
and is managed by local DOC authorities. This area is inhabited by 
both Hochstetter's and Archey's frogs (Thurley, 1996; Thurley & 
Bell, 1994). The Waitakere Ranges, Auckland, New Zealand, is largely 
covered by the Waitakere Ranges Regional Park, administered by 
the Auckland Regional Council. The Waitakere Ranges are not in‐
habited by Archey's frogs, but this area was chosen because there 
are far more distribution data available for Hochstetter's frogs in the 
Waitakere Ranges than in Whareorino Forest (Allen, 2006; Green, 
1994; Green & Tessier, 1990; Moreno, 2009; Nájera‐Hillman, Alfaro, 
O'Shea et al., 2009; Tessier et al., 1991). Sites in the Waitakere 
ranges were centered along streams known to be inhabited by 
Hochstetter's frogs.

At each site, a trapping web consisting of 81 rat snap traps 
(Victor; Woodstream Corporation) was installed. Each web con‐
sisted of 16 trap lines radiating from a central point, each line com‐
prised of five traps, plus an additional trap at the center of the grid. 
For the initial two trapping sessions, traps had a 25‐m spacing, but 
the results of these sessions indicated that a low proportion of 
the rat population present was being trapped. Consequently, for 
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subsequent trapping sessions (n = 3) the spacing was decreased to 
20 m. Rat traps were baited with peanut butter and placed under 
wire mesh tunnels with a plastic covering pegged into the ground 
to reduce the risk to nontarget species. All traps were left baited, 
but unset for the first night (following Hickson, Moller, & Garrick, 
1986; Tobin, Koehler, Sugihara, Ueunten, & Yamaguchi, 1993). Traps 
were then set for five consecutive nights. Each morning, traps were 
checked, carcasses removed, and traps reset if necessary. Dissection 
was carried out at a field station within each study area, whereby 
whole stomachs (excluding esophagus and intestine) were removed 
and stored in 95% ethanol. Instruments were washed in ethanol and 
flamed between dissections.

To ensure that trapping was being carried out on nights that 
frogs were emerging from diurnal retreats, a 50‐m transect was sur‐
veyed each night during trapping. Each survey consisted of visual 
searches for frogs using torches, as Leiopelma rarely produce sounds 
(Stephenson & Stephenson, 1957). Transects were located near to 
(within 100 m) trapping grids, but not inside them, to avoid distur‐
bance to trapping. Indices were standardized by always commenc‐
ing frog counts 1–1.5 hr after dusk (as Leiopelma frogs will have left 
their daytime retreats by this time, given favorable conditions; Cree, 
1989) and always completing transects within 30–40 min.

All procedures employed during fieldwork were ethically re‐
viewed and approved by the University of Otago Animal Ethics 
Committee (ET 25/09).

2.2 | Primer design and optimization

2.2.1 | In silico primer evaluation

Different assays will have different sensitivities for detecting a par‐
ticular prey species. In order to maximize the detection of frog DNA 
from stomach content samples, we used two approaches: one using 

species‐specific primers for each of the two target species, followed 
by Sanger sequencing; and one using group‐specific primers target‐
ing Anura in general, followed by Illumina MiSeq sequencing.

Species‐specific primer pairs were developed targeting short 
fragments of the mitochondrial 12S rRNA gene (Table 1), using 
Primer‐BLAST (http://www.ncbi.nlm.nih.gov/tools/primer‐blast) 
and following the recommendations of King et al. (2008). The 12S 
mitochondrial DNA region is extensively used as a DNA barcode 
for identifying vertebrate species (Kocher et al., 1989; Riaz et al., 
2011) as it has proved difficult to design primers for the COI region 
for vertebrates (Deagle, Jarman, Coissac, Pompanon, & Taberlet, 
2014). The Primer‐BLAST search included 12S sequences of all 
five frog species present on mainland New Zealand: Hochstetter´s 
frog (Genbank accession no. DQ28321), Archey´s frog (DQ283216), 
Ranoidea aurea (AY819398), Ranoidea raniformis (KJ909657), and 
Litoria ewingii (KJ909656).

In order to develop an assay to target a broad range of frog spe‐
cies, both for the current study (to detect all four genera of frogs 
present on mainland New Zealand), and for future studies (in New 
Zealand or elsewhere), the program AMPLICON (Jarman, 2004) was 
used to generate primers intended for selectively amplifying anu‐
ran DNA from mixed DNA samples. Representative sequences for 
the 16S rRNA gene from every major anuran superfamily, along with 
homologous sequences from other species from all animal classes 
(obtained from NCBI database), were used as input for AMPLICON, 
with anuran sequences designated as the target group and se‐
quences from all others treated as the excluded group. It should be 
noted that we initially targeted representative 12S sequences, but 
no suitable primers were found; hence, 16S sequences were subse‐
quently used.

Resultant primers were tested for specificity and taxonomic cov‐
erage in silico using ECOPCR (Ficetola et al., 2010), allowing for up to 
one mismatched base per primer. Specificity was assessed by testing 

TA B L E  1   Details of final primers designed and used in this study. Underlined sequence represents the Illumina adapter overhang 
sequences

Target Primer name 5’−3’

Fragment 
length 
(without 
primers)

Annealing 
tempera-
ture (°C)

Leiopelma 
archeyi

EGETER−2019–
12S‐LA‐F

GGCTGGTATCAGGCACATACC 88 bp 69°C

EGETER−2019–
12S‐LA‐R

CCGGCTCTGGTAGCTGTAA

Leiopelma 
hochstetteri

EGETER−2019–
12S‐LH‐F

AACACTAGCCAAGCCGTCGT 84 bp 69°C

EGETER−2019–
12S‐LH‐R

TTCCCTGGCGGAGTGTGAA

Anura EGETER−2019–
16S‐F

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACCCYATGGARCTTWARAC 150–
190 bp

63°C

EGETER−2019–
16S‐R

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTARCTTGGTYCGTTGATCA

http://www.ncbi.nlm.nih.gov/tools/primer-blast
info:ddbj-embl-genbank/DQ28321
info:ddbj-embl-genbank/DQ283216
info:ddbj-embl-genbank/AY819398
info:ddbj-embl-genbank/KJ909657
info:ddbj-embl-genbank/KJ909656
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primers against the entire set of sequences in the NCBI Nucleotide 
database (downloaded 9th June 2017). To test taxonomic coverage, 
a separate database, referred to herein as “Anura Database,” was cre‐
ated consisting solely of anuran 16S sequences with one sequence 
per species and ensuring each sequence contained the primer bind‐
ing sites. Sequences matching the search term “16S” within the 
taxon “Anura” in the NCBI Nucleotide database were downloaded 
(10th June 2017) and mapped to a reference target that included 
primer binding site sequences in GENEIOUS (v10.1.3; Kearse et al., 
2012; see Supporting Information Figure S1 for mapping parame‐
ters). Sequences that had less than 100% overlap with the reference 
sequence were discarded. Using OBITOOLS (v1.2.11; Boyer et al., 
2016), one sequence per NCBI Taxonomy ID was extracted to form 
the final database. This consisted of 4,136 sequences and 3,051 spe‐
cies names that did not contain the terms “sp.”, “cf.,” or “aff.” There 
are 4,461 anuran species listed in the Nucleotide database not 
containing the aforementioned terms, so it appears that the Anura 
Database represents c. 68% of anuran species in the Nucleotide da‐
tabase. The creation of the database ensured that the in silico tests 
would provide information on the species of frogs that are likely to 
be missed during PCR, as well as those that are likely to amplify. This 
is only feasible if all the species in the starting database contain at 
least one sequence with the anticipated primer binding site, as oth‐
erwise ECOPCR can produce false negatives; that is, the absence 
of an amplified species can be due to the fact that there are sim‐
ply no target sequences in the original database, rather than being 
due to primer mismatches. The aim of this step was not to identify 
every anuran species that might or might not be amplified by the 
primers; rather it was to identify families within anura that are likely 
to be underrepresented in mixed DNA samples when using these 
group‐specific primers. The resulting ECOPCR output was graphed 
in R (v3.3.2; R Core Team, 2016) using the ROBI suite of packages: 
ROBITools, ROBIUtils, ROBITaxonomy, and ROBIBarcodes (http://
metabarcoding.org/obitools).

2.2.2 | In vitro primer evaluation

To assess the specificity of the species‐specific primers, PCRs were 
performed on DNA from of all five frog species present on mainland 
New Zealand, as well ship rat DNA. Tissue samples were obtained 
from the University of Otago (Supporting Information Table S1). 
DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen), 
following the manufacturer's instructions. Gradient PCRs were per‐
formed and specificity for the respective species’ DNA was con‐
firmed by gel electrophoresis using SYBR Safe (Life Technologies). 
Final PCR conditions were as follows: 10.5‐µl reactions containing 
30–50 ng DNA, 1 × NH4 buffer (Bioline), 3.8 mM MgCl2 (Bioline), 
0.2 mM of each dNTP, 0.5 µM of each primer, and 0.5 U BIOTAQ 
(Bioline). The thermal cycling profile was an initial step of 94°C for 
2 min, then 35 cycles of 94°C for 15 s, 69°C for 25 s, and 72°C for 
30 s (Mastercycler Pro 6321, Eppendorf).

To assess the specificity and coverage of the group‐specific 
anura primers, PCRs were performed on DNA from tissue of 61 frog 

species from 29 divergent families (Supporting Information Table 
S1), as well as DNA extracted from tissue of ship rat and a num‐
ber of other nontarget mammals known to be present in the study 
sites: Norway rat (R. norvegicus), hedgehog (Erinaceus europaeus), and 
human (Homo sapiens). Tissue samples were obtained from multiple 
sources (Supporting Information Table S1). DNA was extracted using 
the DNeasy Blood and Tissue Kit (Qiagen), following the manufactur‐
er's instructions. Gradient PCRs were performed and specificity for 
the anuran DNA was confirmed by gel electrophoresis using SYBR 
Safe (Life Technologies). One primer pair (EGETER‐2019‐16S‐F/R; 
Table 1) outperformed two others, and final PCR conditions for this 
pair were as follows: 10‐µl reactions containing 30–50 ng DNA, 
5 µl 2X MyTaq HS Mix (Bioline), and 0.5 µM of each primer. Each 
primer included Illumina adapter overhang sequences, to enable the 
addition of sample indexes during downstream PCRs (Table 1). The 
thermal cycling profile was an initial step of 95°C for 10 min; then 
35 cycles of 95°C for 30 s, 63°C for 30 s, and 72°C for 30 s; with 
a final extension of 72°C for 10 min. To assess the taxonomic res‐
olution of sequences generated by this primer pair, PCR products 
from frog tissue samples were cleaned using Exo/Sap digestion in 
a final volume of 8ul containing 4 U Exonuclease I (Fermentas) and 
1 U Shrimp Alkaline Phosphatase (Fermentas) for 15 min at 37°C and 
inactivated for 15 min at 85°C, and Sanger‐sequenced in both direc‐
tions using an ABI 3130xl DNA Analyser (Applied Biosystems).

To test the sensitivity of the assay, we conducted a limit of de‐
tection experiment, similar to that performed by Sint, Raso, and 
Traugott (2012). This experiment consisted of two tests, one using 
serially diluted total DNA and one using serially diluted amplicon. 
The concentration of total DNA for two distantly related species 
(Ranoidea raniformis and Leiopelma hochstetteri) was measured 
based on the average of three measurements using the QuBit HS 
DNA Assay (Thermo Fisher Scientific) and diluted to 2, 0.2, 0.02, 
0.002, and 0.0002 ng–µl. Separately, PCR product produced by the 
EGETER‐2019‐16S primers from each of the two species was gel‐ex‐
tracted using the QIAquick Gel Extraction Kit (Qiagen). The number 
of amplicon copies in the product was estimated using the QuBit 
HS DNA Assay (Thermo Fisher Scientific) in conjunction with DNA 
CALCULATOR (Sint et al., 2012) and dilutions of 1,000, 500, 100, 50, 
25, 10, and 1 copy‐µl were made. Five PCR replicates were carried 
out for each dilution in each test. DNA templates were not mixed 
prior to PCR: A separate set of replicates was done for each frog spe‐
cies for each test. Furthermore, the entire experiment was carried 
out twice, once using 1 µl of template for each PCR and once using 
1 µl of template plus 1 µl of ship rat total DNA (50 ng‐µl).

It should be noted that we also trialed previously published batra‐
chia‐specific primers (Valentini et al., 2016), but were unable to avoid 
nonspecific amplification of mammalian DNA using the PCR condi‐
tions detailed herein (across a gradient of annealing temperatures).

2.3 | Diet analysis

In the laboratory, morphological analysis of stomach contents 
was undertaken with the aim of identifying frogs as prey using a 

http://metabarcoding.org/obitools
http://metabarcoding.org/obitools
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dissecting microscope (Olympus SZ61, with Olympus DP25 digital 
camera attachment, Olympus Corporation) at between 6.7× and 
45× magnification. Disposable dissection trays were used for each 
sample, work surfaces wiped clean with 10% bleach and instru‐
ments washed in ethanol and flamed between samples. Reference 
frog specimens (R. raniformis; entire frogs and frog skeletons) were 
used to compare prey items based on morphological traits com‐
monly used to identify frog remains to order, genus, or species level 
(Bever, 2005; Holman, 2003; Worthy, 1987a; e.g., the shape of the 
ilium, femur, radioulna, and tibiofibula, the relative width of digit 
terminal disks and/or the extent of interdigital webbing; Courtice 
& Grigg, 1975).

After morphological analysis, samples were homogenized and 
DNA was extracted following Egeter, Bishop, and Robertson (2015), 
using the Qiagen DNeasy blood and tissue kit (Qiagen). All PCR plates 
included two positive controls (DNA from Archey's and Hochstetter's 
frogs) and negative controls (every eighth well). PCRs were run in 
duplicate to minimize the impact of stochastic pipetting error and to 
increase prey detection (Kvitrud, Riemer, Brown, Bellinger, & Banks, 
2005; Murphy, Waits, & Kendall, 2003). Pre‐ and post‐PCR proce‐
dures were carried out in separate laboratories. Aerosol‐resistant pi‐
pette tips were used throughout all PCR procedures. As a qualitative 
assessment of the prevalence of potential false negatives (e.g., Oehm, 
Juen, Nagiller, Neuhauser, & Traugott, 2011), where adequate DNA 
was not extracted or PCR inhibition may have occurred, all stom‐
ach samples were subject to PCR using “universal” 12S vertebrate 
primers (L1091/H1478; Kocher et al., 1989), using PCR conditions as 
detailed by Egeter, Bishop et al. (2015). This provided an estimation 
of the number of samples resulting in amplifiable DNA in general. 
Amplicons from this PCR were visualized on gels but were not se‐
quenced as they are longer (c. 400 bp) than usually recommended for 
diet analysis studies (King et al., 2008) and would also be expected to 
amplify ship rat DNA in high proportions.

PCR products from stomach content samples, produced using 
the species‐specific primer pairs, were cleaned and Sanger‐se‐
quenced as described earlier. PCR products produced using the 
EGETER‐2019‐16S primer pair were subjected to high‐throughput 
sequencing. For this, a second PCR was conducted, to add indexes 
and Illumina flow cell adaptors, using 10‐µl reactions contain‐
ing: 1 µM of each index‐primer (Gansauge & Meyer, 2013; Kircher, 
Sawyer, & Meyer, 2012), 5 µl 2X KAPA HiFi HotStart ReadyMix (Kapa 
Biosystems), and 2 µl of previous PCR product diluted 1:10 using 
10 mM Tris. The thermal cycling profile consisted of an initial step of 
95°C for 3 min; 10 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C 
for 30 s; and a final extension of 72°C for 5 min. The resulting PCR 
product (c. 225–250 bp) was cleaned using 1.2 X by volume AMPure 
XP beads (Beckman Coulter) following the manufacturer's instruc‐
tions with the exception that 80% ethanol was used instead of 70%. 
Elution was done in 25 µl Tris 10 mM. Library quality was assessed 
by measuring DNA concentration of each cleaned PCR product using 
Nanodrop 2000 (Thermo Fisher Scientific), and each PCR product 
was normalized to 15 nM using 10 mM Tris pH 8.5 0.1% Tween. The 

final pool was created by combining 5 µl from each normalized sam‐
ple. The quality of the final pool was assessed by qPCR using KAPA 
Illumina Library Quantification (Illumina) following the manufactur‐
er's instructions. Illumina paired‐end sequencing was performed 
using a 300‐cycle Illumina MiSeq V2 Kit (Illumina) on an Illumina 
MiSeq sequencer housed at CIBIO‐InBio (Vairão Campus, Portugal).

2.4 | Sequence data

Sanger sequences were processed using GENEIOUS (v10.1.3; Kearse 
et al., 2012). Forward and reverse reads were aligned with 100% 
similarity and primers were removed. Consensus sequences were 
visually inspected and, where possible, ambiguities were amended 
based on chromatograms.

Reads produced on the MiSeq were demultiplexed using 
BASESPACE (basespace.illumina.com). OBITOOLS (v1.2.11; Boyer 
et al., 2016) was used for the following: paired‐end reads were 
aligned, alignments with a score <50 were removed, reads without 
both primer sequences were removed, reads within each sample 
were clustered into OTUs only if 100% identical, OTUs <100 bp 
were removed. OTUs comprising ≤3% of the total read count within 
a sample were removed. This last threshold was reached by dividing 
the highest number of reads found in a PCR negative (n = 26) by the 
number of reads in each sample. The highest result for any sample 
corresponded to 3% of reads. Overall, the filtering resulted in PCR 
negatives without any remaining reads.

Resultant sequences were BLASTed against the GenBank 
Nucleotide database using the MEGABLAST (Zhang, Schwartz, 
Wagner, & Miller, 2000) algorithm. BLAST results were assigned to 
taxa using MEGAN (Community Edition 6.10.8; Huson et al., 2016) 
with the default parameters, apart from (minScore = 100.0, topPer‐
cent = 5.0, minSupportPercent = 0.0, minSupport = 1). In addition, 
neighbor‐joining trees were constructed in Mega7 (v7.0.21; Kumar, 
Stecher, & Tamura, 2016) using a local database, which consisted 
solely of representative target sequences (160–190 bp) of all five 
New Zealand mainland frog species, along with sequences derived 
from stomach samples. A similar tree was constructed for all Sanger‐
sequenced frog tissue samples to highlight the efficacy of the target 
region as a DNA barcode.

2.5 | Data analysis

Frequency of Occurrence (FO) of frogs as prey for each trapping ses‐
sion was calculated using Equation 1:

where P is the number of stomach samples testing positive for frog 
DNA, and R is the number of rats trapped.

We considered that a sample testing positive must represent a 
minimum of one event when a rat ingested frog tissue; therefore, 
FO units are presented as minimum number of ingestion events per 

(1)FO=

P

R
,



5038  |     EGETER ET al.

rat. The minimum number of ingestion events does not necessarily 
equate to the ingestion or death of one frog as a positive sample may 
represent multiple ingestion events from more than one frog or, con‐
versely, multiple rats may have consumed the same individual frog, 
by scavenging portions of a dead frog, for example.

To incorporate a temporal parameter into the FO data, Temporal 
Frequency of Occurrence (TFO) was also calculated for each 5‐night 
trapping session in units of minimum number of ingestion events per 
rat per night (Equation 2).

where i is the trap night.
Equation 2 assumed that a sample being positive, that is, result‐

ing in sequence(s) matching a frog species, was the result of an inges‐
tion event occurring during the sampling period (i.e., on the night the 
sample was obtained). We consider that this assumption was likely to 
hold true due to the following rationale:

• Archey's frogs are active only between dusk and dawn (Cree, 
1989), and ship rats are also primarily nocturnal (Dowding & 
Murphy, 1994; Hooker & Innes, 1995).

• Daylight hours during the study periods ranged from 12 to 15.5 hr.
• Detection probability of frog tissue in ship rat stomach contents 

using DNA‐based diet analysis under laboratory conditions was 
previously found to be very low c. 12 hr after ingesting frog tis‐
sue (<0.1; Egeter, Bishop et al., 2015). Furthermore, detection 
probabilities in the laboratory study were likely to be higher than 
under field conditions as rats in the laboratory were fed ad libi‐
tum, which is known to increase detection probabilities over time 
(Dodd, 2004).

• Therefore, even if a rat ingested frog tissue just before daybreak, 
but was not caught in a trap until the earliest possible time during 
the following trapping session (dusk of the same day), frog DNA 
would not be detected.

This is similar to approaches used by Dempster (1967; see also 
Ashby, 1974; and Sopp, Sunderland, Fenlon, & Wratten, 1992; 

Dempster, 1960), but does not assume that the detection of an in‐
gestion event is equivalent to predation of an individual.

3  | RESULTS

3.1 | Detecting frog remains in ship rat stomach 
contents

In total, 191 ship rat stomach content samples were obtained: 60 at 
Whareorino Forest, where both frog species are present; and 131 in 
the Waitakere Ranges, where only Hochstetter's frog is present. Of 
these, 165 (86.4%) exhibited good amplification of vertebrate DNA 
using the universal vertebrate primers (as indicated by bands in elec‐
trophoresis gels). Six of these 165 samples tested positive for the 
presence of frog remains using molecular diet analysis (Tables 2 and 
3; Supporting Information Figure S2).

Using morphological analysis, none of the rat stomach contents 
were found to contain remains of frogs. The species‐specific ap‐
proach coupled with Sanger sequencing had a similar success rate 
to the group‐specific approach coupled with MiSeq sequencing (six 
positives each), but in two cases one of the approaches detected 
a species the other missed. One sample tested positive for both 
Hochstetter's frog and Archey's frog (Table 3). In all cases, PCR repli‐
cates resulted in the same species being detected. No other species, 
anuran or otherwise, were detected.

Temporal Frequency of Occurrence (minimum number of in‐
gestion events per rat per night; TFO) ranged from 0 to 0.007 for 
Hochstetter's frogs and 0.1 to 0.22 for Archey's frogs (Table 2). Only 
two ingestion events were detected for Hochstetter's frog, one in 
each study area, despite assaying 191 stomach samples, while four 
predation events were detected for Archey's frog from 60 stom‐
ach samples (contemporary populations of Archey's frogs are not 
found in the Waitakere Ranges). Ingestion events were detected on 
nights when 0–0.45 frogs‐m were observed on frog index transects 
(Supporting Information Table S2). Indeed, on one night that four 
samples tested positive for frog DNA, no frogs were observed along 
the transect, indicating that rats were not only predating frogs on 
nights of high frog emergence (Supporting Information Table S2). No 

(2)TFO=

(

∑ Pi

Ri

)/

5,

TA B L E  2   Details of trapping sessions and detection of ingestion events including Frequency of occurrence (FO; minimum number of 
ingestion events per rat) and Temporal Frequency of Occurrence (TFO; minimum number of ingestion events per rat per night)

Study area Site Session Captures

No. of samples 
positive FO TFO

LA LH LA LH LA LH

Whareorino Forest 1 Mar 2010 16 1 0 0.063 0 0.1 0

Whareorino Forest 2 Mar 2012 44 4 1 0.091 0.023 0.222 0.007

Waitakere Ranges 3 Apr 2010 39 0 0 0 0 0 0

Waitakere Ranges 3 Dec 2011 51 0 1 0 0 0 0.006

Waitakere Ranges 4 Dec 2011 41 0 0 0 0 0 0

Note. LA: Archey's frog; LH: Hochstetter's frog.
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further analyses were conducted on frog emergence data due to the 
low number of nights with detected ingestion events.

It should be noted that one sample resulted in sequences that 
were assigned to ship rat, but these were filtered out during the 
bioinformatic processing. Read numbers from the MiSeq run were 
lower than expected at only c. 340 reads/sample before filtering 
and c. 200 final reads/sample (Table 3). This was caused by primer 
dimers from different primer sets belonging to samples from other 
unrelated projects that used up a large proportion of the reads in 
the overall run (data not shown). Nonetheless, as the results are 
corroborated by the species‐specific primers coupled with Sanger 
sequencing, this was not deemed to be a major issue.

One drawback of molecular diet analysis is the potential for the 
occurrence of false positives through sample contamination. We 
included a PCR negative in every eighth PCR well, as well as using 
aerosol‐resistant tips and keeping pre‐ and post‐PCR procedures to 
separate laboratory rooms. The lack of amplification in these sample 
wells showed that a systematic contamination was not occurring, 
and contamination of samples without nearby samples also being 
contaminated would be difficult to explain. Stomach samples result‐
ing in positive detection of frog DNA were not situated close to the 
positive control on any PCR plates, so this is also unlikely to have 
caused any false positives.

3.2 | Group‐specific primers

In silico, the EGETER‐2019‐16S primers performed well in terms 
of coverage, amplifying 84% of species in the Anura Database. A 
few families may be underrepresented by the primer pair, for ex‐
ample, Ranidae (41% species amplified), Arthroleptidae (38%), 
Eleutherodactylidae (51%), and Ptychadenidae (51%; Figure 1). 
Amplification and reliable Sanger sequences were obtained from 
57/61 (93%) of the species tested in vitro (Supporting Information 
Table S1). The species not amplified belonged to Ascaphidae, 
Ranidae, Strabomantidae, and Ptychadenidae, which partially con‐
curs with the in silico analysis where the primers amplified 100%, 
42%, 85%, and 51% of these families, respectively.

At lower annealing temperatures (<61°C), DNA from tissue of 
nontarget (mammalian) species was occasionally amplified, but this 
did not occur using the final PCR conditions. In silico, 100% of ampli‐
fications belonged to the phylum Chordata, 81% of these attributed 
to the class Amphibia. The remaining amplifications consisted  
primarily of fish species (Figure 2), indicating there may be some 
nontarget amplification of this group.

The DNA barcode amplified by EGETER‐2019‐16S primers ap‐
pears to offer good resolution, unambiguously identifying 83% of 
the Anura Database to species level and 94% to genus level in silico. 
Sequences obtained for each species from tissue samples were also 
unique with a mean p‐distance of 57 base differences (using pairwise 
deletion of gaps in comparison). The majority of sequences were as‐
signed to the expected taxonomy (Supporting Information Table S1). 
See Supporting Information Figure S3 for a neighbor‐joining tree 
highlighting the efficacy of the target region as a DNA barcode.TA
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3.3 | Limit of detection

Using the EGETER‐2019‐16S primer pair, DNA could be reliably am‐
plified (100%) in the two frog species tested at 0.2 ng/reaction total 
DNA (Figure 3). Detection success started to drop at concentrations 
lower than this, and no amplifications were obtained at 0.002 ng/
reaction total DNA. The addition of 50 ng/reaction of predator DNA 
negatively affected Hochstetter's frog DNA amplification, even at 
the upper total DNA concentrations, while it only appeared to affect 
R. raniformis DNA amplification at 0.02 ng/reaction (Figure 3). Using 
target fragment amplicon as template, DNA could be amplified from 
500 starting copies (although one PCR out of the five failed at this 
concentration), regardless of being in the presence of predator DNA 
or not. At 100 copies/reaction, amplification success was reduced to 
0.4 for both frog species and the presence of predator DNA nega‐
tively affected amplification at this concentration (Figure 3).

4  | DISCUSSION

4.1 | Validation of primers

We present two new species‐specific primers and one group‐spe‐
cific primer for frogs. The group‐specific primer pair appears to 
exhibit good coverage, high taxonomic resolution, and reasonable 
specificity. It was also shown to detect frog DNA at relatively low 
concentrations, even in the presence of high amounts of predator 
DNA. However, there were differences in assay sensitivity among 
the two species tested in the limit of detection experiment, suggest‐
ing that variability in the template target DNA or in primer binding 
sites affects the detection of different prey species, especially when 
predator DNA is co‐extracted in high relative proportions. Such bi‐
ases have often been noted using group‐specific primers (see Pinol, 
Mir, Gomez‐Polo, & Agusti, 2015).

For this study, it was pertinent to ensure that predator DNA was 
not being amplified, which required relatively high annealing tem‐
peratures for all primer sets. If the primers were to be used for other 
sample types, such as environmental DNA from water bodies, it may 
be beneficial to test the primers at less stringent conditions to maxi‐
mize detection of anuran species.

4.2 | Comparison of diet analysis approaches

From feeding trials, molecular diet analysis has been shown to out‐
perform morphological diet analysis when attempting to detect am‐
phibians as prey in ship rat stomach and fecal samples (Egeter, Bishop 
et al., 2015), which concurs with the present field‐based study. In 
fact, studies comparing morphological and molecular diet analy‐
ses have generally found that DNA‐based methods improve prey 
detection success, either by detecting prey more frequently, or by 
detecting a higher number of prey species (Boyer, Yeates, Wratten, 
Holyoake, & Cruickshank, 2011; Carreon‐Martinez, Johnson, Ludsin, 
& Heath, 2011; Casper, Jarman, Gales, & Hindell, 2007; Casper, 
Jarrnan, Deagle, Gales, & Hindell, 2007; Dunn, Szabo, Mcveagh, & 
Smith, 2010; Purcell, Mackey, Lahood, Huber, & Park, 2004; Scribner 
& Bowman, 1998; Soininen et al., 2009; Tollit et al., 2009). In the 
present study, morphological analysis failed to identify any frog re‐
mains in ship rat stomach contents. This is likely because ship rats 
often do not ingest skeletal components of frog prey, preferring to 
consume only soft tissue, and even if bones are ingested, they are 
highly fragmented, making it impossible to discern diagnostic traits 
(Egeter, Bishop et al., 2015).

The species‐specific and group‐specific molecular diet analysis 
approaches agreed with each other in five out of the seven detec‐
tions of frog DNA from ship rat stomach contents. Given the low 
number of total detections, it is not possible to state whether the 
disagreements were due to differences in assay sensitivity or PCR 

F I G U R E  1   Family coverage of the of EGETER‐2019‐16S primer pair in the order Anura according to in silico PCR using the Anura 
Database. One base mismatch per primer was allowed. The percentages of each family amplified by the primers are indicated above the bars
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stochasticity. Both approaches overcome the issue of co‐amplifying 
predator or other nontarget DNA, which can hamper prey species 
detection (see Jarman, Deagle, & Gales, 2004; Zarzoso‐Lacoste et 
al., 2016; Vestheim & Jarman, 2008). The group‐specific approach 
reduces the number of PCRs required per sample and has the poten‐
tial to detect a much broader range of species. Overall, the molecular 
diet approaches proved to be a valuable addition in this study, al‐
lowing the detection of ingestion events that would otherwise have 
been unobserved.

4.3 | Incorporation of temporal parameters

FO data provide a metric that can be difficult to interpret, as it does 
not include a temporal perspective. In this study, we incorporated a 
temporal parameter into the commonly used FO metric, similar to 
approaches used by Dempster (1967; see also Ashby, 1974; and Sopp 
et al., 1992; Dempster, 1960). For each trapping session, this allowed 
expression in units of minimum number of ingestion events per rat 
per night (TFO). This unit provides a more intuitive metric, as it con‐
stitutes a temporal rate (the minimum number of ingestion events 

during a given time period), rather than a relative rate (the minimum 
number of ingestion events per predator). Deagle et al. (2018) noted 
that when prey are eaten sporadically and in discrete foraging events 
(as is the case for the present study), FO data may provide mean‐
ingful indications of how often a taxon is being consumed. We are 
not aware of other DNA‐based diet studies that have incorporated a 
temporal parameter into FO data.

Another benefit of TFO data, as calculated herein, is that the 
maximum detection period (maximum time that prey is detectable 
in stomach contents since prey was ingested) is used to ascertain 
the shortest interval possible between sampling periods. This means 
that prey DNA detection can be assigned confidently to an ingestion 
event that occurred within the sampling period, while also maximiz‐
ing the temporal resolution. Measuring a maximum detection period 
requires relatively simple feeding trial data, as the aim is only to find 
the point at which prey are no longer detectable. This is in contrast 
to measuring 50% detection probabilities from feeding trial data 
(Gagnon, Doyon, Heimpel, & Brodeur, 2011; Greenstone, Payton, 
Weber, & Simmons, 2014; Greenstone, Rowley, Weber, Payton, & 
Hawthorne, 2007; Greenstone et al., 2010; Szendrei et al., 2010; 

F I G U R E  2   Specificity of 
EGETER‐2019‐16S primer pair shown as 
number of entries in the NCBI Nucleotide 
(nt) database amplified by the primer pair, 
grouped by Class, according to in silico 
PCR. One base mismatch per primer was 
allowed
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von Berg, Traugott, Symondson, & Scheu, 2008; Waldner, Sint, 
Juen, & Traugott, 2013; Welch, Schofield, Chapman, & Harwood, 
2014), which requires relatively high sample sizes at multiple time 
points ranging from very high to very low detection probabilities. 
Furthermore, while 50% detection probabilities can be useful for 
adjusting relative prey FO data, it is less clear whether it can be rea‐
sonably applied to directly adjust a temporal rate, such as TFO, as 
feeding trial data are unlikely to accurately reflect prey DNA detec‐
tion across the spectrum of field conditions. This is less of an issue 
when using a maximum detection period, as the shortest interval 
possible between sampling periods can be chosen such that detect‐
ing prey from a previous sampling period is extremely unlikely.

While it is tempting to assume that each prey detection in mo‐
lecular diet analysis represents at least one prey individual, this 
assumption cannot be confirmed for this study as partially eaten 
Archey's frog carcasses have been found previously with rat bite 
marks (Fitzgerald & Campbell, 2002; Thurley & Bell, 1994), indicat‐
ing the possibility of multiple rats consuming tissue from a single 
frog within one night. Nonetheless, estimating a minimum predation 
rate (minimum number of individuals consumed during a given time 
period) from TFO data should be possible in many study systems, 
particularly those with predators that consume only live whole prey 
(Codron, Codron, Sponheimer & Clauss 2016; Deagle et al. 2018). If 
feces are being utilized for diet analysis, rather than stomach con‐
tents, then additional considerations are required, but the principles 
remain the same—an ingestion event can be assigned to a sampling 
period as long as the fecal sample was produced during the sampling 
period and the maximum detection period does not extend into the 
previous sampling period. We recommend that future studies fo‐
cussed on measuring the impact of predators using molecular diet 
analyses should take maximum prey detection times into consider‐
ation during the design of field sampling, to ensure that each prey 
detection can be assigned to a specific sampling period.

It should be noted that the estimates we obtained can be con‐
sidered very conservative. We did not attempt to apply 50% detec‐
tion probabilities from previous feeding trial data to our field data, 
which would have adjusted FO values upwards (Gagnon et al., 2011; 
Greenstone et al., 2014, 2007, 2010; Szendrei et al., 2010) and we 
assumed that a prey DNA detection was the result of at least one in‐
gestion event, when it may have been the result of numerous events. 
This means that the true rate of ingestion events is very likely to be 
higher than the minimum rate estimated herein. Nonetheless, a con‐
servative measure of predation can still provide an informative basis 
for making conservation management decisions.

A major challenge for molecular diet analysis is to estimate prey 
biomass or number of prey individuals in a sample. Although relat‐
ing sequence read counts to prey biomass generally requires signif‐
icant effort, such as complex feeding trials to calculate correction 
factors to account for bias between prey taxa, there are promis‐
ing advances being made in this research area (Bowles, Schulte, 
Tollit, Deagle, & Trites, 2011; Deagle et al., 2018; Deagle, Thomas, 
Shaffer, Trites, & Jarman, 2013; Deagle & Tollit, 2007; Thomas, 
Deagle, Eveson, Harsch, & Trites, 2016; Thomas, Jarman, Haman, 

Trites, & Deagle, 2014). Another, less commonly applied, approach 
is to utilize the genetic information of the prey population to esti‐
mate the minimum number of prey individuals required to produce 
the observed variation in a sample (Carreon‐Martinez, Wellband, 
Johnson, Ludsin, & Heath, 2014). We envisage that the most accu‐
rate DNA‐based predation approaches in the future will build on 
existing methods by combining temporal parameters, FO data, se‐
quence read count data, and individual‐level genetic information.

4.4 | Predation on New Zealand native frogs

This is the first time that remains of New Zealand native frogs have 
been detected in mammalian stomach contents. The results indicate 
that ship rats are consuming both of the mainland species. To make 
statistical comparisons of the effects of ship rats between the two 
frog species, more sites and seasons would be required. However, 
it is notable that detected ingestion events were rare, particularly 
for Hochstetter's frog—only one detected ingestion event from 133 
samples collected from the Waitakere Ranges (of which 112 had am‐
plifiable DNA).

Other studies have compared the abundances of Hochstetter's 
frogs in areas with or without rodent control, but results to date 
have been varied (Baber et al., 2008; Egeter, Robertson et al., 2015; 
Mussett, 2005; Nájera‐Hillman, King et al., 2009). This may be due to 
difficulties with monitoring Hochstetter's frog abundances as detec‐
tion probabilities can vary spatially or temporally (Anderson, 2001, 
2003; Bailey, Simons, & Pollock, 2004; Crossland et al., 2005; Hyde & 
Simons, 2001). Nájera‐Hillman, King et al. (2009) found no difference 
in the relative abundance of Hochstetter's frogs among areas with and 
without rodent control. Conversely, Mussett (2005) and Baber et al. 
(2008) found that Hochstetter's frog abundance was higher in mam‐
mal‐controlled areas. However, the results of Mussett (2005) were 
complicated by the fact that the highest ship rat abundance coincided 
with the highest frog abundance and at some mammal‐controlled 
sites ship rat abundance was similar to sites without mammal control. 
Longson, Brejaart, Baber, and Babbitt (2017) observed a fourfold in‐
crease in Hochsteter's frog abundances within a mammal‐controlled 
area over a four‐year period. Using stable isotope analysis, Nájera‐
Hillman Alfaro Breen and O'Shea (2009) concluded that shortfin eels 
(Anguilla australis) and banded kokopu (Galaxias fasciatus) may be 
predators of Hochstetter's frogs in the Waitakere Ranges, while the 
data for ship rats were inconclusive. It is possible that the inconclusive 
results were due to a very low level of predation by ship rats, which 
would agree with the results of the present study. Hochstetter's frogs 
are generally observed in and adjacent to streams and sometimes es‐
cape into water when approached (Allen, 2006; Green, 1994; Green 
& Tessier, 1990; Moreno, 2009; Nájera‐Hillman, Alfaro, O'Shea et al., 
2009; Tessier et al., 1991), which may help to explain the low number 
of ingestion events detected in this study. However, more sampling 
would be required to ascertain whether ingestion events are indeed a 
consistently rare event across various sites and seasons.

At Whareorino Forest, five ingestion events of Archey's frog 
were detected out of 60 samples (of which 54 had amplifiable DNA). 
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Considering the TFO values of 0.1–0.22 ingestion events per rat per 
night, this equates to 0.2–1.18 ingestion events per ha per night, based 
on the number of rats caught in the effective trapping area during 
the sampling periods (and Brown, Moller, Innes, & Alterio, 1996; fol‐
lowing Hooker & Innes, 1995). Archey's frog densities can be high, 
estimated at c. 34 and 77 frogs per 100 m2 on two monitoring grids 
in Whareorino Forest in 2011 (Pledger, 2011). However, as they are 
long‐lived and produce few eggs (Bell, 1985, 1994a; Bell & Wassersug, 
2003), such a frequency of ingestion events may still have a significant 
impact on the population. With the current data, this remains difficult 
to interpret and these rates are also likely to change over time, given 
the annual fluctuation of rat densities (e.g., Daniel 1972; Smith 1986) 
and varying food sources available. Results of a previous experiment 
indicated that population sizes of Archey's frogs decreased outside a 
rodent‐controlled area, while they remained stable or increased inside 
the rodent‐controlled area, although it should be noted that the study 
was confined to a small sample size of two 100‐m2 monitoring grids 
per treatment (Pledger, 2011). Sites 1 and 2 of the present study were 
situated close to the grid from that experiment, and our results pro‐
vide some support for those findings.

The results of this study were provided to the New Zealand 
Department of Conservation and this, along with multiple lines of 
evidence indicating the negative impact of introduced mammals on 
a range of native species, has led to the inclusion of Whareorino 
Forest in New Zealand's mammal control program.

5  | CONCLUSIONS

Ship rats are consuming both species of native New Zealand frogs 
still present on the mainland. This is the first time these species have 
been detected in mammalian stomach contents. Molecular diet anal‐
ysis outperformed morphological techniques. Although frog preda‐
tion by ship rats was rare, it may still have a significant impact on the 
frog populations. We were able to incorporate a temporal parameter 
into FO diet data, which allowed the calculation of ingestion events 
per rat per night. We are not aware of other DNA‐based diet stud‐
ies that have incorporated a temporal parameter into FO data. The 
usefulness of such a metric will depend on the study system, in par‐
ticular the feeding ecology of the predator. We provide recommen‐
dations for future diet studies focussed on measuring the impact of 
predators on prey species.
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