- 1 Abstract:
- 2

3 Objectives: Dietary nitrate (NO₃⁻) supplementation and ischaemic preconditioning (IPC) can
4 independently improve exercise performance. The purpose of this study was to explore whether
5 NO₃⁻ supplementation, ingested prior to an IPC protocol, could synergistically enhance
6 parameters of exercise.

7 **Design:** Double-blind randomized crossover trial.

Methods: Ten competitive male cyclists (age 34 ± 6 years, body mass 78.9 ± 4.9 kg, $\dot{V}O_{2peak}$ 8 9 $55 \pm 4 \text{ mL} \cdot \text{kg} \cdot \text{min}^{-1}$ completed an incremental exercise test followed by three cycling trials comprising a square-wave submaximal component and a 16.1 km time-trial. Oxygen uptake 10 (VO₂) and muscle oxygenation kinetics were measured throughout. The baseline (BASE) trial 11 12 was conducted without any dietary intervention or IPC. In the remaining two trials, participants 13 received 3×5 min bouts of lower limb bilateral IPC prior to exercise. Participants ingested 14 NO_3 -rich gel (NIT+IPC) 90 min prior to testing in one trial and a low NO_3 -placebo in the other 15 (PLA+IPC). Plasma NO_3^- and nitrite (NO_2^-) were measured immediately before and after 16 application of IPC.

17 **Results:** Plasma [NO₃⁻] and [NO₂⁻] were higher before and after IPC in NIT+IPC compared to 18 BASE (P<0.001) but did not differ between BASE and PLA+IPC. There were no differences 19 in $\dot{V}O_2$ kinetics or muscle oxygenation parameters between trials (all P>0.4). Performance in 20 the time-trial was similar between trials (BASE 1343 ± 72 s, PLA+IPC 1350 ± 75 s, NIT+IPC 21 1346 ± 83 s, P=0.98).

22 Conclusions: Pre-exercise IPC did not improve sub-maximal exercise or performance
 23 measures, either alone or in combination with dietary NO₃⁻ supplementation.

24

25 Keywords: Nitric oxide; blood flow; hyperaemia; nitrite; exercise

- 26
- 27

29 Introduction

Ischemic preconditioning (IPC) typically consists of blood flow occlusion followed by a period 30 31 of reperfusion which is repeated over 2 - 4 cycles. Whilst originally utilized to suppress the damaging effects of prolonged ischemia to an organ or skeletal muscle, IPC has recently been 32 33 adopted as a preparation tool for performance enhancement¹. Although the precise mechanism(s) by which IPC can improve exercise performance are not fully understood, recent 34 35 evidence demonstrates that IPC causes an increase in circulating nitrite (NO_2) via shear stress activation of nitric oxide (NO) by endothelial NO synthase (eNOS), resulting in subsequent 36 physiological effects^{2,3}. For example, remote limb IPC provides systemic whole-body 37 protection beyond the site of ischemia and when applied to either the upper or lower limbs, can 38 lead to enhanced muscle blood flow and thus oxygen (O₂) delivery, and an improved efficiency 39 during aerobic respiration⁴⁻⁶. These physiological factors may account for the purported 40 ergogenic effects of IPC on exercise performance^{7,8}. 41

42

43 Dietary nitrate (NO_3) supplementation can also increase circulating plasma NO_2 via the enterosalivary $NO_3 - NO_2 - NO$ pathway⁹. During this process, facultative anaerobic bacteria 44 residing in the oral cavity reduce NO_3^- to NO_2^- which can be further reduced to NO in hypoxic 45 or acidic conditions¹⁰. Studies have demonstrated that dietary NO₃⁻ supplementation can induce 46 vasodilation, reduce the O2 cost (VO2) of exercise and, in some cases, improve exercise 47 performance^{10,11}. Importantly, these effects appear more pronounced in hypoxic or acidic 48 conditions¹², such as during high-intensity exercise or at altitude¹³. Another potential synergetic 49 50 interaction between IPC and NO3⁻ is the time course of their effects. It has been shown that 51 plasma NO metabolites reach peak levels 1-3 h following ingestion of NO₃, with levels returning to baseline levels after 6-8 hours¹⁴. Similarly, IPC has been shown to offer an early 52 window of protection 1-2 h post-IPC for ischemic reperfusion injury¹⁵ and influence exercise 53 performance up until 8 h after administration¹⁶. Given that IPC and ingestion of NO₃⁻ can both 54 independently increase NO2⁻ and improve exercise performance, it is conceivable that a 55

combination of these interventions may lead to a more pronounced increase in NO availabilityand improvement in exercise performance.

58

The purpose of this study therefore, was to determine the combined effects of dietary $NO_3^$ supplementation and pre-exercise IPC of the lower limbs on the physiological responses to submaximal exercise and time-trial performance. We hypothesized that IPC combined with dietary NO_3^- supplementation would result in a cumulative rise in plasma NO_2^- and improve muscle oxygenation, $\dot{V}O_2$ kinetics, and exercise performance compared to a control or IPC alone.

64

65 Methodology

Ten competitive, trained male cyclists (age 34 ± 6 years, body mass 78.9 ± 4.9 kg, \dot{VO}_{2peak} : 55 66 \pm 4 mL·kg·min⁻¹, ventilatory threshold: 272 \pm 30 W, maximum work rate: 424 \pm 42 W) 67 volunteered and provided written informed consent to participate in the study. The participants 68 69 had all previously participated in exercise testing in a laboratory. All participants met the 70 following inclusion criteria: cycling training for a minimum of two years, training at least three days per week, and racing on a regular basis including time-trials¹⁷. The study was granted 71 72 ethical approval by the School of Science and Sport Ethics Committee at the University of the West of Scotland, and all procedures were conducted in accordance with the Declaration of 73 74 Helsinki.

75

76 The experimental design is outlined in Figure 1. Each participant visited the laboratory on four 77 separate occasions over a 4-6 week period and all visits were interspersed with a minimum 1-78 week recovery period. Participants arrived at the laboratory at least 3 h post-prandial and completed each of their trials at the same time of day $(\pm 2 h)$ in a temperature-controlled 79 80 environment ($20.5 \pm 1.6^{\circ}$ C). During visit 1, standard anthropometric measures were assessed prior to completion of a continuous graded incremental exercise test to exhaustion at a rate of 81 30 W·min⁻¹ on an electronically braked cycle ergometer (Lode Excalibur, Groningen, The 82 83 Netherlands) for determination of ventilatory threshold and VO_{2peak}. The second visit was a

84 baseline performance trial (BASE) which was followed by two further experimental85 performance trials.

86

The BASE trial followed a similar protocol to the experimental trials but was not preceded by 87 88 any intervention. The experimental performance trials were preceded by ingestion of either $2 \times$ NO_3^- gels (NIT+IPC; Science in Sport Go+ Nitrates, Lancashire, UK, ~ 500 mg NO_3^-) or a low 89 NO_3 placebo gel matched for taste and texture (PLA+IPC; Science in Sport bespoke gel, ~0.001 90 mg NO₃⁻) 90 min before arrival at the laboratory¹⁸. This dose of NO₃⁻ has been previously shown 91 to improve cycling performance¹³. The supplementation regimen was conducted using a 92 93 double-blind randomized crossover design. The allocation of supplementation order was 94 arranged using a random sequence generation and this was not revealed to the researchers until 95 after analyses had been completed. Participants were asked to refrain from the consumption of 96 alcohol and caffeine and to avoid any strenuous exercise for 24 h before each trial. In addition, 97 they were requested not to use anti-bacterial mouthwash for the entire duration of the study.

98

99 During the NIT and PLA trials, each participant received four cycles of IPC. The IPC protocol 100 for each cycle comprised 5 min bilateral occlusion of the lower-limbs at a pressure of 180 mmHg (E20 Rapid Cuff Inflator, Hokanson, Bellevue, WA) followed by 5 min reperfusion^{4,19}. 101 102 The pressure applied was >50 mmHg above resting systolic blood pressure (122 ± 6 mmHg), a 103 stimulus which has been shown previously to improve exercise performance⁸. During the first 104 cycle of IPC, visual confirmation of arterial occlusion was assessed using color Doppler 105 imaging duplex with a L12 linear array transducer (Vivid 7 ultrasound machine, GE 106 Electronics, Germany). During BASE, participants lay supine for 30 min to match the duration of IPC in the experimental trials. In each trial, participants initially lay supine for 15 min prior 107 to obtaining a venous blood sample by venepuncture to ensure values were not influenced by 108 postural changes²⁰. Samples were collected in a vacutainer containing EDTA and spun 109 immediately in a centrifuge for 10 min at 4000 rpm and 4°C before the plasma was extracted 110 111 and frozen at -80°C. Plasma samples were later analysed for plasma [NO₃⁻] and [NO₂⁻] via gas112 phase chemiluminescence using methods previously described in detail²¹. A second venous

113 blood sample was obtained immediately after completion of the IPC protocol in the PLA+IPC

and NIT+IPC trials to determine the effects of IPC on NO_2^- and NO_3^- concentration.

115

Participants then performed a 12 min square-wave bout of submaximal cycling exercise 116 followed by a 16.1 km time-trial. The square-wave protocol consisted of 3 min rest in a seated 117 position followed by 6 min cycling at an intensity of 80% ventilatory threshold and cadence of 118 119 80 rpm followed by 3 min of seated recovery. The square-wave test was completed on an electronically braked cycle ergometer (Lode Excalibur, Groningen, The Netherlands) and 120 121 enabled a standardized comparison of muscle oxygenation and $\dot{V}O_2$ kinetics between trials. Pulmonary gas exchange and ventilation were continuously measured breath-by-breath for the 122 123 full duration of the square wave bout (Medgraphics Ultima, MGC Diagnostics, MN, USA) but 124 not during the time-trial. The coefficient of variation (CoV) for the measurement of VO₂ during 125 moderate intensity cycling exercise in our lab is 2.4%. Near infrared spectroscopy (NIRS) was 126 used to monitor local muscle oxygenation of the right vastus lateralis (NIRO 200NX, 127 Hamamatsu Photonics KK, Hamamatsu, Japan). The NIRO uses three different wavelengths of 128 near-infrared light (735, 810 and 850 nm) transmitted via a light emitting diode. The receiving 129 diode measures the returning light from the tissue. The probes were placed in a manufacturer-130 supplied black rubber holder (with a fixed emitter-detectors distance of 4 cm) and attached to the muscle with tape then secured using a transparent film dressing. The modified Beer-131 Lambert method was used to detect changes in the concentration of oxygenated (HBO₂) and 132 deoxygenated (HHb) haemoglobin and total tissue haemoglobin and myoglobin (tHB = HBO₂ 133 + HHb). All NIRS data are expressed as arbitrary units based on the change from the baseline 134 value. Tissue oxygenation index (TOI) was assessed using the spatially resolved spectroscopy 135 technique. TOI is presented as a percentage and denotes the percentage ratio of HBO₂ to tHB. 136 137 The NIRS data were sampled at 5 Hz and then average for final minute of the resting phase and 138 for the last 3 min of the exercise phase were analysed.

139 The cycling time-trial was completed on an air and magnetically braked cycle ergometer (Wattbike Pro, Wattbike Ltd, Nottingham UK). Participants were instructed to cycle at a freely 140 141 chosen cadence against an adjustable resistance in order to complete the time-trial in the fastest time possible. The Wattbike Pro cycle ergometer has been shown to have good reliability when 142 used for repeated trials among trained participants²². The CoV for the measurement of 16.1 km 143 time-trial performance in trained cyclists on the Wattbike cycle ergometer in our lab is 0.9%. 144 Participants received verbal feedback on the distance covered upon completion of each 145 146 kilometre and every 250 m for the final kilometre.

147

Breath by breath $\dot{V}O_2$ data from the square-wave test were filtered to remove values lying 4 standard deviations (SD) from the local 5 breath mean. A non-linear least squares monoexponential model was fitted to the data from 0 s to 540 s to characterise the $\dot{V}O_2$ responses to sub-maximal exercise using the following equation:

152

153
$$\dot{V}O_2(t) = \dot{V}O_2 \text{rest} + A_p \left[1 - e^{-(t/\tau)}\right]$$

154

155 Where $\dot{V}O_2(t)$ is the $\dot{V}O_2$ at a given time point (*t*); $\dot{V}O_2$ rest is the mean $\dot{V}O_2$ during rest; A_p is 156 the amplitude (steady state $\dot{V}O_2$ - $\dot{V}O_2$ rest) and τ the time constant.

157

158 The reported mean response time (MRT) was calculated as the τ of the exponential function 159 describing the rate of $\dot{V}O_2$ and represents the time elapsed for a 63% increase in $\dot{V}O_2$. The 160 functional "gain" was also calculated by dividing the A_p by the work rate of the submaximal 161 exercise.

162

All analyses were carried out using RStudio Team (2016) Version (RStudio: Integrated
Development for R. RStudio, Inc., Boston, MA URL <u>http://www.rstudio.com/</u>) (see
Supplementary methods) and Graph Pad Prism 7 (GraphPad Software Inc., San Diego, USA)
for graph figures. One-way (condition) and two-way (condition and time) repeated-measures

analyses of variance were used to analyse the differences in plasma NO₃⁻ and NO₂⁻ concentrations, respiratory variables, muscle oxygenation, and time-trial outcomes. Post-hoc analyses of significant within-subject effects were performed with adjustments for multiple comparisons using the Bonferroni correction. Statistical significance was accepted when P<0.05. Results are expressed as mean \pm SD and Δ mean \pm 95% confidence intervals (95% CI) where appropriate.

173

174 **Results**

175 $Plasma NO_2^{-} and NO_3^{-}$

176 The effect of NO₃⁻ supplementation and IPC on plasma NO metabolites are presented in Figure 177 **2A and Figure 2B.** There was a significant effect of NO_3^- supplementation on plasma $[NO_3^-]$ and $[NO_2^-]$ (both P<0.001). Prior to the administration of IPC, plasma $[NO_3^-]$ and $[NO_2^-]$ were 178 179 significantly higher in the NIT+IPC condition compared to BASE (NO₃⁻ P<0.001, mean 180 difference 375 µM, 95%CI 306–444 µM; NO₂⁻ P<0.001, mean difference 225 nM, 95%CI 85– 181 366 nM). There was no difference between the PLA+IPC and BASE conditions for either 182 measure (NO₃⁻ P=0.991; NO₂⁻ P=0.991). Following the administration of IPC in the NIT+IPC 183 condition, plasma $[NO_3^-]$ and $[NO_2^-]$ remained elevated compared to BASE $(NO_3^- P < 0.001, P < 0.001)$ mean difference 342 µM, 95%CI 280–404 µM; NO₂⁻ P<0.001, mean difference 250 nM, 95%CI 184 185 113–387 nM). Plasma [NO₃⁻] and [NO₂⁻] did not change from pre- to post-administration of IPC in the NIT+IPC condition (P=0.991, P=0.995, respectively). There were no differences in 186 plasma [NO3-] and [NO2-] between PLA+IPC and BASE following IPC administration 187 (P=1.00). These measures did not change from pre- to post-administration of IPC in the 188 PLA+IPC trial (NO₃⁻ P=0.991; NO₂⁻ P=0.999). 189

190

191 $\dot{V}O_2$ kinetics

192 The pulmonary gas exchange data at rest and during submaximal exercise are presented in 193 **Table 1**. The $\dot{V}O_2$ at rest and during steady state exercise was not different between conditions 194 (*P*=0.400, *P*=0.401, respectively). There were also no differences in the MRT (*P*=0.400),

amplitude of the $\dot{V}O_2$ response (*P*=0.400), or the functional gain (decrease in $\dot{V}O_2$ relative to the increase in work rate) between trials (*P*=0.104).

197

198 *Muscle oxygenation*

199 The [HbO₂], [HHb], and [TOI] data are presented in **Table 1.** There were no significant 200 differences between the three trials at rest or during exercise in any of the NIRS variables (all 201 P>0.9).

202

203 *Time-trial performance*

The time-trial completion time was not different between trials (BASE 1342.8 ± 72.3 s,
PLA+IPC 1350 ± 74.5 s, NIT+IPC 1346.2 ± 83.3 s, P=0.978, Figure 2C).

206

207 Discussion

To our knowledge, this is the first study to investigate the influence of dietary $NO_3^$ supplementation combined with bilateral lower limb IPC on the physiological responses to submaximal cycling and exercise performance. In contrast to our hypothesis, IPC combined with NO_3^- supplementation increased the availability of plasma $[NO_2^-]$ from baseline but did not improve $\dot{V}O_2$ kinetics or muscle oxygenation during submaximal exercise or enhance cycling time-trial performance.

214

Whilst IPC has been previously shown to improve some physiological responses to exercise 4-215 ⁶, there are conflicting findings¹⁹ suggesting IPC does not alter $\dot{V}O_2$ or $\dot{V}O_2$ kinetics. Cocking 216 and colleagues²³ recently reported that VO₂ was lower during a cycling time-trial following the 217 218 administration of IPC on the lower limbs. The authors suggested that local IPC may increase metabolic efficiency although this is likely task and/or intensity specific. The present study 219 demonstrates further that pre-exercise administration of IPC does not improve muscle oxygen 220 or reduce VO2 during sub-maximal exercise in well-trained cyclists. Moreover, the addition of 221 222 an acute NO_3^- supplement to IPC also failed to alter these parameters. This finding is at odds

with the majority of studies investigating dietary NO_3^- supplementation, although the lack of effect on $\dot{V}O_2$ is not entirely unprecedented²⁴.

225

224

The previously reported reductions in VO_2 that result from either IPC or NO_3 administration 226 may be underpinned by an increased NO availability¹³ although the precise mechanism(s) 227 remain unconfirmed. Whereas dietary NO_3^- is believed to augment NO availability via the 228 enterosalivary NO₃⁻-NO₂⁻-NO pathway⁹, IPC may increase endogenous production of NO via 229 eNOS stimulation². Previous data suggests that an increased availability of NO may improve 230 the efficiency of mitochondrial respiration²⁵ and/or, reduce the energy cost of muscle force 231 production²⁶. It is also well-established that NO availability plays a role in the regulation of 232 skeletal muscle blood flow and oxygenation during exercise²⁷. In the present study, IPC did not 233 234 increase plasma $[NO_2^-]$ or $[NO_3^-]$, which may explain the null effect on the outcome parameters assessed in this arm of the study. Conversely, the concentration of circulating NO metabolites 235 236 did substantially increase during the NIT+IPC protocol but VO₂ and muscle oxygenation did not differ from BASE. Whilst it can be argued that plasma $[NO_2]$ and $[NO_3]$ do not necessarily 237 238 reflect whole body NO production, plasma $[NO_2]$ is generally accepted to be the best marker of regional eNOS activity²⁸. Whilst these findings are not readily explainable, a recent clinical 239 study by Hauerslev and colleagues²⁹ may shed some light on this discrepancy. These authors 240 241 reported that IPC and treatment with glyceryl tri-nitrate (an NO donor) each independently protected against endothelial ischemic reperfusion injury. When combined, however, the 242 243 protection was lost. Others have speculated that excess NO generated by NO donors can inhibit the neural signaling cascade that follows repeated bouts of ischemia and reperfusion³⁰. This 244 neural stimulation causes unidentified low-molecular-mass circulating hydrophobic factor(s) to 245 be released into the blood stream which are suggested to underpin the cardioprotective effects 246 of IPC³¹. 247

248

In line with the absence of any alteration in muscle oxygenation and $\dot{V}O_2$ kinetics parameters, the application of IPC, either alone or in combination with dietary NO₃⁻ ingestion, did not have

any impact on cycling time-trial performance. Although previous research has shown that IPC 251 can improve running⁷, rowing³² and swimming performance⁸ these ergogenic benefits are not 252 always observed³³. Dietary NO_3^{-1} supplementation has also been shown to improve cycling 253 performance in some trials¹³ but a recent meta-analysis suggests that the effects are trivial and 254 non-significant¹¹. The failure of either NIT+IPC or PLA-IPC to improve exercise performance 255 may be explained by a number of factors. One cannot rule out that the beneficial effects of NO_3^{-1} 256 may have been abolished by co-administration of IPC^{29} as previously discussed. Alternatively, 257 studies have noted a profound inter-individual variability in response to NO₃⁻ supplementation¹⁴ 258 which may be influenced by multiple factors. For example, Porcelli and colleagues³⁴ have 259 demonstrated that well-trained individuals, such as those used in the present study, have a 260 blunted ergogenic response to NO3 supplementation. We have also demonstrated that the 261 262 abundance of oral NO₃-reducing bacteria can influence NO₃/NO₂ pharmacokinetics⁹. However, the oral microbiome was not assessed in the present study and further research is 263 required to determine how the abundance of these bacteria may influence the physiological 264 265 responses to NO_3^- supplementation.

266

267 One potential limitation of our study is that we did not include a sham condition for IPC. Indeed, 268 a recurring issue in the field is the lack of an appropriate control measure for IPC research 269 studies. In some studies, cuff inflation pressures of 20-50 mmHg were used as a sham treatment 270 or cuffs were applied but not inflated¹. However, the pressure differences are easily identifiable 271 making it impossible to adequately blind participants to the treatment. This raises the possibility 272 that IPC may exert either placebo or nocebo effects on exercise performance. One recent study demonstrated similar ergogenic effects were obtained using both IPC (occlusion at 220 mmHg) 273 and a sham treatment (pressure of 20 mmHg)³³. Moreover, IPC has been shown to improve 274 275 exercise tolerance (as measured by time to exhaustion at 0.5 km/h above peak velocity) but this improvement is no greater than that obtained through a placebo intervention of therapeutic 276 ultrasound³⁵. On the whole this highlights the need for a better understanding of the mechanisms 277 278 of IPC action and the potential mediators involved.

279 Based upon our findings, future studies may wish to examine different exercise intensities when 280 combining IPC and dietary NO₃⁻ given that NO appears to best utilized in conditions of hypoxia, 281 at a low pH, and in non-oxidative fast twitch fibers. Given IPC causes complete arterial occlusion it could prime muscle for exercise at extreme intensities where oxygen availability is 282 significantly decreased. Griffin et al.³⁶ have reported that IPC enhanced critical power (CP) in 283 recreationally active males, building upon the rationale that CP has been shown to be improved 284 when O_2 delivery is enhanced via exposure to hyperoxia (Fi $O_2 = 70\%$)³⁷. If IPC can indeed 285 improve CP, this should theoretically translate to an improvement during exercise intensities 286 between the heavy and severe domains. 287

288

289 Conclusions

290 This is the first study to investigate the effects of IPC in combination with dietary NO_3^{-1} 291 supplementation on the responses to submaximal cycling exercise and time-trial performance. 292 While previous research has reported that IPC and NO₃⁻ can each independently have ergogenic effects, we found that IPC alone or in combination with NO₃⁻ did not alter VO₂ kinetics, muscle 293 294 oxygenation, or performance. Of note, there was no improvement in these outcomes in the 295 NIT+IPC trial despite the protocol significantly increasing the availability of plasma NO₂⁻ 296 metabolites. While further research is required to unravel the interactions between responses to 297 IPC and NO₃ supplementation, the present research study suggests that a combination of these interventions is not an efficacious method to improve 16.1 km cycling performance in well-298 299 trained cyclists.

300

302	Practi	cal Implications
303	•	Acute ingestion of dietary nitrate in combination with ischemic preconditioning does
304		not influence oxygen kinetics, muscle oxygenation, or cycling performance
305	•	A combination of acute dietary nitrate and ischemic preconditioning is not an effective
306		method of improving exercise performance.
307	•	Nitrate and nitrite bioavailability do not appear to be mediators of the physiological
308		responses to ischemic preconditioning
309		
310		
311		
312		
313		

References:

315	1	Incognito A V, Burr JF, Millar PJ. The Effects of Ischemic Preconditioning on Human
316		Exercise Performance. Sport Med 2016; 46(4):531-544. Doi: 10.1007/s40279-015-
317		0433-5.
318	2	Rassaf T, Totzeck M, Hendgen-Cotta UB, et al. Circulating nitrite contributes to
319		cardioprotection by remote ischemic preconditioning. Circ Res 2014; 114(10):1601-
320		1610. Doi: 10.1161/CIRCRESAHA.114.303822.
321	3	Dezfulian C, Taft M, Corey C, et al. Biochemical signaling by remote ischemic
322		conditioning of the arm versus thigh: Is one raise of the cuff enough? Redox Biol
323		2017; 12:491–498. Doi: 10.1016/j.redox.2017.03.010.
324	4	De Groot PCE, Thijssen DHJ, Sanchez M, et al. Ischemic preconditioning improves
325		maximal performance in humans. Eur J Appl Physiol 2010; 108(1):141-146. Doi:
326		10.1007/s00421-009-1195-2.
327	5	Kido K, Suga T, Tanaka D, et al. Ischemic preconditioning accelerates muscle
328		deoxygenation dynamics and enhances exercise endurance during the work-to-work
329		test. Physiol Rep 2015; 3:e12395–e12395. Doi: 10.14814/phy2.12395.
330	6	Kraemer R, Lorenzen J, Kabbani M, et al. Acute effects of remote ischemic
331		preconditioning on cutaneous microcirculation - a controlled prospective cohort study.
332		BMC Surg 2011; 11(1):32. Doi: 10.1186/1471-2482-11-32.
333	7	Bailey TG, Jones H, Gregson W, et al. Effect of ischemic preconditioning on lactate
334		accumulation and running performance. Med Sci Sports Exerc 2012; 44(11):2084-
335		2089. Doi: 10.1249/MSS.0b013e318262cb17.
336	8	Jean-St-Michel E, Manlhiot C, Li J, et al. Remote preconditioning improves maximal
337		performance in highly trained athletes. Med Sci Sports Exerc 2011; 43(7):1280–1286.
338		Doi: 10.1249/MSS.0b013e318206845d.

339	9	Burleigh MC, Liddle L, Monaghan C, et al. Salivary nitrite production is elevated in
340		individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic Biol
341		Med 2018; 120(March):80-88. Doi: 10.1016/j.freeradbiomed.2018.03.023.
342	10	Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in
343		physiology and therapeutics. Nat Rev Drug Discov 2008; 7(2):156-167. Doi:
344		10.1038/nrd2466.
345	11	Mcmahon NF. The Effect of Dietary Nitrate Supplementation on Endurance Exercise
346		Performance in Healthy Adults : A Systematic Review and Meta-Analysis. Sport Med
347		2017; 47(4):735–756. Doi: 10.1007/s40279-016-0617-7.
348	12	Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by
349		deoxyhemoglobin vasodilates the human circulation. Nat Med 2003; 9(12):1498-1505.
350		Doi: 10.1038/nm954.
351	13	Muggeridge DJ, Howe CCF, Spendiff O, et al. A single dose of beetroot juice
352		enhances cycling performance in simulated altitude. Med Sci Sports Exerc 2014;
353		46(1):143–150. Doi: 10.1249/MSS.0b013e3182a1dc51.
354	14	James PE, Willis GR, Allen JD, et al. Nitrate pharmacokinetics: Taking note of the
355		difference. Nitric Oxide - Biol Chem 2015; 48(3):44-50. Doi:
356		10.1016/j.niox.2015.04.006.
357	15	Hausenloy DJ, Yellon DM. The Second Window of Preconditioning (SWOP) where
358		are we now? Cardiovasc Drugs Ther 2010; 24(3):235–254. Doi: 10.1007/s10557-010-
359		6237-9.
360	16	Lisbôa FD, Turnes T, Cruz RSO, et al. The time dependence of the effect of ischemic
361		preconditioning on successive sprint swimming performance. J Sci Med Sport 2016;
362		20(5):507–511. Doi: 10.1016/j.jsams.2016.09.008.
363	17	Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of World Class Cycling. J

364		Sci Med Sport 2000; 3(4):414–433. Doi: 10.1016/S1440-2440(00)80008-0.
365	18	Muggeridge DJ, Sculthorpe N, Grace FM, et al. Acute whole body UVA irradiation
366		combined with nitrate ingestion enhances time trial performance in trained cyclists.
367		<i>Nitric Oxide - Biol Chem</i> 2015; 48:3–9. Doi: 10.1016/j.niox.2014.09.158.
368	19	Clevidence MW, Mowery RE, Kushnick MR. The effects of ischemic preconditioning
369		on aerobic and anaerobic variables associated with submaximal cycling performance.
370		Eur J Appl Physiol 2012; 112(10):3649–3654. Doi: 10.1007/s00421-012-2345-5.
371	20	Liddle L, Monaghan C, Burleigh MC, et al. Changes in body posture alter plasma
372		nitrite but not nitrate concentration in humans. Nitric Oxide 2018; 72:59-65. Doi:
373		10.1016/j.niox.2017.11.008.
374	21	McIlvenna LC, Monaghan C, Liddle L, et al. Beetroot juice versus chard gel: A
375		pharmacokinetic and pharmacodynamic comparison of nitrate bioavailability. Nitric
376		Oxide 2017; 64:61–67. Doi: 10.1016/j.niox.2016.12.006.
377	22	Hopker J, Myers S, Jobson SA, et al. Validity and Reliability of the Wattbike Cycle
378		Ergometer. Int J Sports Med 2010; 31(10):731–736.
379	23	Cocking S, Wilson MG, Nichols D, et al. Is There an Optimal Ischemic-
380		Preconditioning Dose to Improve Cycling Performance? Int J Sports Physiol Perform
381		2018; 13(3):274–282.
382	24	Pawlak-Chaouch M, Boissière J, Gamelin FX, et al. Effect of dietary nitrate
383		supplementation on metabolic rate during rest and exercise in human : A systematic
384		review and a meta-analysis. Nitric Oxide 2016; 53:65-76. Doi:
385		10.1016/j.niox.2016.01.001.
386	25	Larsen FJ, Schiffer TA, Borniquel S, et al. Dietary inorganic nitrate improves
387		mitochondrial efficiency in humans. Cell Metab 2011; 13(2):149-159. Doi:
388		10.1016/j.cmet.2011.01.004.

389	26	Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary
390		nitrate supplementation on blood pressure and the physiological responses to
391		moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol
392		2010; 299(4):R1121-R1131. Doi: 10.1152/ajpregu.00206.2010.
393	27	Chavoshan B, Sander M, Sybert TE, et al. Nitric oxide-dependent modulation of
394		sympathetic neural control of oxygenation in exercising human skeletal muscle. J
395		Physiol 2002; 540(1):377-386. Doi: 10.1113/jphysiol.2001.013153.
396	28	Lauer T, Preik M, Rassaf T, et al. Plasma nitrite rather than nitrate reflects regional
397		endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc
398		Natl Acad Sci U S A 2001; 98(22):12814–12819. Doi: 10.1073/pnas.221381098.
399	29	Hauerslev M, Pryds K, Contractor H, et al. Influence of long-term treatment with
400		glyceryl trinitrate on remote ischemic conditioning. Am J Physiol - Hear Circ Physiol
401		2018; 315(1):150–158. Doi: 10.1152/ajpheart.00114.2018.
402	30	Steensrud T, Li J, Dai X, et al. Pretreatment with the nitric oxide donor SNAP or nerve
403		transection blocks humoral preconditioning by remote limb ischemia or intra-arterial
404		adenosine. Am J Physiol Heart Circ Physiol 2010; 299(5):H1598-H1603. Doi:
405		10.1152/ajpheart.00396.2010.
406	31	Shimizu M, Tropak M, Diaz RJ, et al. Transient limb ischaemia remotely
407		preconditions through a humoral mechanism acting directly on the myocardium :
408		evidence suggesting cross-species protection. Clin Sci 2009; 117(5):191-200. Doi:
409		10.1042/CS20080523.
410	32	Kjeld T, Rasmussen MR, Jattu T, et al. Ischemic preconditioning of one forearm
411		enhances static and dynamic apnea. Med Sci Sports Exerc 2014; 46(1):151-155. Doi:
412		10.1249/MSS.0b013e3182a4090a.
413	33.	Marocolo M, Da Mota GR, Pelegrini V, et al. Are the Beneficial Effects of Ischemic

414		Preconditioning on Performance Partly a Placebo Effect? Int J Sports Med 2015;
415		36(10):822-825. Doi: 10.1055/s-0035-1549857.
416	34.	Porcelli S, Ramaglia M, Bellistri G, et al. Aerobic Fitness Affects the Exercise
417		Performance Responses to Nitrate Supplementation. Med Sci Sport Exerc 2015;
418		47(8):1643–1651. Doi: 10.1249/MSS.000000000000577.
419	35.	Sabino-Carvalho JL, Lopes TR, Obeid-Freitas T, et al. Effect of Ischemic
420		Preconditioning on Endurance Performance Does Not Surpass Placebo. Med Sci Sport
421		Exerc Exerc 2017; 49(1):124–132. Doi: 10.1249/MSS.00000000000001088.
422	36	Griffin PJ, Ferguson RA, Gissane C, et al. Ischemic preconditioning enhances critical
423		power during a 3 minute all-out cycling test. J Sports Sci 2017; 36(9):1038–1043. Doi:
424		10.1080/02640414.2017.1349923.
425	37	Vanhatalo A, Fulford J, Bailey SJ, et al. Dietary nitrate reduces muscle metabolic
426		perturbation and improves exercise tolerance in hypoxia. J Physiol 2011;
427		589(22):5517-5528. Doi: 10.1113/jphysiol.2011.216341.
428		

430 Figure Legends

Figure 1: Study design schematic outlining the three experimental conditions: Baseline
(BASE), placebo plus ischemic preconditioning (PLA+IPC) and nitrate supplementation plus
ischemic preconditioning (NIT+IPC). The BASE trial was completed first with the remaining
two conditions completed in a randomized order.

 Figure 2: (A) Plasma nitrite and (B) plasma nitrate concentration before (PRE) and after **437** (POST) application of the ischaemic preconditioning protocol during each performance trial. **438** (C) 16.1km time-trial completion time, including individual completion times. Data are **439** presented as mean \pm SD. *denotes significant difference from BASE condition (P < 0.001).

. . /

Variable	BASE	PLA + IPC		NIT + IPC	
		Difference	95 % CI	Difference	95 % CI
Oxygen Kinetics					
VO ₂ rest (ml·min ⁻¹)	313	-24	-74, 25	-34	-83, 16
VO ₂ exercise (ml·min ⁻¹)	2999	-201	-490, 88	-123	-412, 166
MRT (s)	41.9	0.6	-5.3, 6.4	0.5	-5.4, 6.4
Amplitude (ml·min ⁻¹)	2682	-177	-451, 97	-89	-363, 184
Functional gain (ml·min·W ⁻¹)	12.6	-0.8	-1.5, -0.1	-0.4	-1.1, 0.3
NIRS (Arbitrary units)					
[HHb] rest	1.38	2.09	-4.32, 8.49	0.18	-6.23, 6.59
[HHb] exercise	7.52	-0.08	-6.48, 6.33	-1.08	-7.49, 5.33
[HbO ₂] rest	0.89	0.93	-3.91, 5.77	1.45	-3.39, 6.29
[HbO ₂] exercise	-4.84	-0.59	-5.43, 4.24	-0.57	-5.41, 4.27
[TOI] rest	65.62	-2.11	-10.83, 6.62	-0.74	-9.47, 7.99
[TOI] exercise	57.23	0.79	-7.94, 9.52	1.09	-7.64, 9.81

453 Table 1. Oxygen Kinetics and NIRS variables during submaximal exercise test

454

455 MRT = Mean response Time,

- 456 NIRS = Near-infrared spectroscopy
- 457 HHb = deoxyhaemoglobin
- 458 HBO2 = oxyhaemoglobin
- 459 TOI = Tissue Oxygenation Index

460

