19 research outputs found
Social cues in the expression of sequential alternative reproductive tactics in young males of the peacock blenny, Solaria pavo
Phenotypic change in response to variation in environmental cues has been widely documented in fish. Transitions in social dominance, in particular, have been shown to induce a rapid switch in reproductive phenotypes in many species. However, this effect has been mainly studied in adults and focused on behavioural transitions. The way social cues constraint the phenotypic development of juveniles remains poorly studied in fish. We tested the importance of social dominance and density in the phenotypic development of juveniles of the peacock blenny Solaria pavo. This species shows sequential male alternative reproductive tactics. In the first breeding season males can reproduce as nest-holders or as parasitic males (female-mimicking), or postpone reproduction; from the following season afterwards all males reproduce as nest-holders. Parasitic males have relatively larger testes that lack a testicular gland, present in the testes of nest-holders. The testicular gland is the main source of androgens in the testes and accordingly nest-holders have higher circulating androgen levels. In addition, exogenous androgen administration to parasitic males promotes the development of secondary sexual characters (SSC) only present in nest-holders such as a head crest and an anal gland. We raised juveniles under a high or low-density treatment and monitored social interactions for 1 month. No significant effect of density on the development of juvenile males was detected. However, within each replicate, the relative body size of juvenile males at the beginning of the experiment determined their dominance status, with dominant males developing towards the nest-holder morphotype. Dominant males engaged in more nest defence behaviour, showed larger testicular glands, had higher levels of 11-ketotestosterone (11-KT) and testosterone (T) and developed more SSC, as compared to subordinate males. However, these effects of social dominance were moderated by body condition as only dominant males in good body condition developed SSC. The effect of social dominance and of the area of the testicular gland on the development of SSC was mediated by 11-KT and on the expression of nest defence behaviour by T. Interestingly, in spite of the higher androgen levels and more pronounced morphologic development of SSC in dominant individuals, gonadal development was independent of social dominance and most fish still had underdeveloped testis at the end of the experiment. In conclusion, social dominance promoted the development of the testicular gland, an increase in circulating androgen levels and the development of SSC, but did not promote testicular development. This suggests a dissociation of mechanisms underlying sexual maturation and the expression of male reproductive traits. This dissociation seems to be the key for the occurrence of female-mimicking males in this species, which are sexually mature despite lacking the SSC typical of nest-holdets. (C) 2012 Elsevier Inc. All rights reserved.R&D Units Plurianual Program (R&D unit) from the Portuguese Foundation for Science and Technology (FCT) [331/2001]; FCT [SFRH/BD/6502/2001]; [POCTI/BSE/38395/2001]; [PTDC/MAR/71351/2006]info:eu-repo/semantics/publishedVersio
Global report on preterm birth and stillbirth (2 of 7): discovery science
<p>Abstract</p> <p>Background</p> <p>Normal and abnormal processes of pregnancy and childbirth are poorly understood. This second article in a global report explains what is known about the etiologies of preterm births and stillbirths and identifies critical gaps in knowledge. Two important concepts emerge: the continuum of pregnancy, beginning at implantation and ending with uterine involution following birth; and the multifactorial etiologies of preterm birth and stillbirth. Improved tools and data will enable discovery scientists to identify causal pathways and cost-effective interventions.</p> <p>Pregnancy and parturition continuum</p> <p>The biological process of pregnancy and childbirth begins with implantation and, after birth, ends with the return of the uterus to its previous state. The majority of pregnancy is characterized by rapid uterine and fetal growth without contractions. Yet most research has addressed only uterine stimulation (labor) that accounts for <0.5% of pregnancy.</p> <p>Etiologies</p> <p>The etiologies of preterm birth and stillbirth differ by gestational age, genetics, and environmental factors. Approximately 30% of all preterm births are indicated for either maternal or fetal complications, such as maternal illness or fetal growth restriction. Commonly recognized pathways leading to preterm birth occur most often during the gestational ages indicated: (1) inflammation caused by infection (22-32 weeks); (2) decidual hemorrhage caused by uteroplacental thrombosis (early or late preterm birth); (3) stress (32-36 weeks); and (4) uterine overdistention, often caused by multiple fetuses (32-36 weeks). Other contributors include cervical insufficiency, smoking, and systemic infections. Many stillbirths have similar causes and mechanisms. About two-thirds of late fetal deaths occur during the antepartum period; the other third occur during childbirth. Intrapartum asphyxia is a leading cause of stillbirths in low- and middle-income countries.</p> <p>Recommendations</p> <p>Utilizing new systems biology tools, opportunities now exist for researchers to investigate various pathways important to normal and abnormal pregnancies. Improved access to quality data and biological specimens are critical to advancing discovery science. Phenotypes, standardized definitions, and uniform criteria for assessing preterm birth and stillbirth outcomes are other immediate research needs.</p> <p>Conclusion</p> <p>Preterm birth and stillbirth have multifactorial etiologies. More resources must be directed toward accelerating our understanding of these complex processes, and identifying upstream and cost-effective solutions that will improve these pregnancy outcomes.</p
Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice
<div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div