53 research outputs found

    Lattice strain effects on doping, hydration and proton transport in scheelite-type electrolytes for solid oxide fuel cells

    Get PDF
    Lattice strain is considered a promising approach to modulate the structural and functional properties of oxide materials. In this study we investigate the effect of lattice strain on doping, hydration and proton transport for the family of scheelite-type proton conductors using both atomistic and DFT computational methods. The results suggest that tensile strain improves the dopant solubility and proton uptake of the material. The anisotropic proton pathways change from being within the a-b plane to being in the a-c plane. However, the predicted reduction in the migration barrier suggests that improvements in ionic conductivity due to lattice strain effects will be limited, in contrast with the work on oxide ion conduction. Such results are rationalized in terms of structural changes and differences in migration steps between oxide ions and protonic species.</p

    Good Vibrations:Locking of Octahedral Tilting in Mixed-Cation Iodide Perovskites for Solar Cells

    Get PDF
    Metal halide perovskite solar cells have rapidly emerged as leading contenders in photovoltaic technology. Compositions with a mixture of cation species on the A-site show the best performance and have higher stability. However, the underlying fundamentals of such an enhancement are not fully understood. Here, we investigate the local structures and dynamics of mixed A-cation compositions. We show that substitution of low concentrations of smaller cations on the A-site in formamidimium lead iodide (CH(NH2)2PbI3) results in a global "locking" of the PbI6 octahedra tilting. In the locked structure the octahedra tilt at a larger angle but undergo a much reduced amplitude of rocking motion. A key impact of this feature is that the rotational or tumbling motion of the CH(NH2)2+ molecular ion in a locked cage is severely restricted. We discuss the impact of locking on the photovoltaic performance and stability.</p

    Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces

    Get PDF
    Hybrid materials composed of different functional structural units offer the possibility of tuning both the thermal and electronic properties of a material independently. Using quantum mechanical calculations, we investigate the change in the electronic and thermoelectric transport properties of graphene and hydrogen-terminated carbon nanoribbons (CNRs) when these are placed on the SrTiO3 (001) surface (STO). We predict that both p-type and n-type composite materials can be achieved by coupling graphene/CNR to different surface terminations of STO. We show that the electronic properties of graphene and CNR are significantly altered on SrO-terminated STO but are preserved upon interaction with TiO2-terminated STO and that CNRs possess distinct electronic states around the Fermi level because of their quasi-one-dimensional nature, leading to a calculated Seebeck coefficient much higher than that of a pristine graphene sheet. Moreover, our calculations reveal that in the TiO2-SrTiO3/CNR system there is a favorable electronic level alignment between the CNR and STO, where the highest occupied molecular orbital of the CNR is positioned in the middle of the STO band gap, resembling n-type doping of the substrate. Our results offer design principles for guiding the engineering of future hybrid thermoelectric materials and, more generally, nanoelectronic materials comprising oxide and graphitic components

    Lattice strain effects on doping, hydration and proton transport in scheelite-type electrolytes for solid oxide fuel cells

    Get PDF
    Tensile lattice strain enhances Ca dopant limit and proton incorporation in scheelite-type proton conductors, modifying the preferential conduction pathways.</p

    Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.

    Get PDF
    Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1-z)Li4SiO4-(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0-1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10(-3) S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state (6)Li, (7)Li, and (31)P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.The ALISTORE ERI and CNRS are acknowledged for supporting Y.D. through a joint Ph.D. scholarship between Picardie (France) and Bath (UK). The authors thank D. Sheptyakov (PSI, Switzerland) and M. Bianchini (ILL-Grenoble, France) for assistance with neutron diffraction experiments, and M. T. Dunstan (Cambridge, UK) for assistance with NMR experiments. Financial support from the EPSRC Energy Materials Programme (Grant EP/K016288) is gratefully acknowledged. The HPC Materials Chemistry Consortium (EP/L000202) allowed use of the ARCHER facilities. O.P. and S.E. acknowledge support from a Marie Skłodowska-Curie Fellowship (H2020-MSCA-IF-2014-EF, no. 655444) and an ERASMUS+ scholarship, respectively.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b0444

    Structural and mechanistic insights into fast lithium-ion conduction in Li<sub>4</sub>SiO<sub>4</sub>-Li<sub>3</sub>PO<sub>4 </sub>solid electrolytes

    Get PDF
    Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1–z)Li4SiO4–(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0–1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10–3 S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state 6Li, 7Li, and 31P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.</p

    Good Vibrations:Locking of Octahedral Tilting in Mixed-Cation Iodide Perovskites for Solar Cells

    Get PDF
    Metal halide perovskite solar cells have rapidly emerged as leading contenders in photovoltaic technology. Compositions with a mixture of cation species on the A-site show the best performance and have higher stability. However, the underlying fundamentals of such an enhancement are not fully understood. Here, we investigate the local structures and dynamics of mixed A-cation compositions. We show that substitution of low concentrations of smaller cations on the A-site in formamidimium lead iodide (CH­(NH<sub>2</sub>)<sub>2</sub>PbI<sub>3</sub>) results in a global “locking” of the PbI<sub>6</sub> octahedra tilting. In the locked structure the octahedra tilt at a larger angle but undergo a much reduced amplitude of rocking motion. A key impact of this feature is that the rotational or tumbling motion of the CH­(NH<sub>2</sub>)<sub>2</sub><sup>+</sup> molecular ion in a locked cage is severely restricted. We discuss the impact of locking on the photovoltaic performance and stability
    corecore