430 research outputs found
Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems
The finite size dependent enhancement of pairing in mesoscopic Fermi systems
is studied under the assumption that the BCS approach is valid and that the two
body force is size independent. Different systems are investigated such as
superconducting metallic grains and films as well atomic nuclei. It is shown
that the finite size enhancement of pairing in these systems is in part due to
the presence of a surface which accounts quite well for the data of nuclei and
explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0
Evaluation of the BCS Approximation for the Attractive Hubbard Model in One Dimension
The ground state energy and energy gap to the first excited state are
calculated for the attractive Hubbard model in one dimension using both the
Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are
provided as a function of coupling strength and electron density. While the
ground state energies are always in very good agreement, the BCS energy gap is
sometimes incorrect by an order of magnitude, particularly at half-filling.
Finite size effects are also briefly discussed for cases where an exact
solution in the thermodynamic limit is not possible. In general, the BCS result
for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure
Density-induced BCS to Bose-Einstein crossover
We investigate the zero-temperature BCS to Bose-Einstein crossover at the
mean-field level, by driving it with the attractive potential and the particle
density.We emphasize specifically the role played by the particle density in
this crossover.Three different interparticle potentials are considered for the
continuum model in three spatial dimensions, while both s- and d-wave solutions
are analyzed for the attractive (extended) Hubbard model on a two-dimensional
square lattice. For this model the peculiar behavior of the crossover for the
d-wave solution is discussed.In particular, in the strong-coupling limit when
approaching half filling we evidence the occurrence of strong correlations
among antiparallel-spin fermions belonging to different composite bosons, which
give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure
Non-interacting Cooper pairs inside a pseudogap
I present a simple analytical model describing the normal state of a
superconductor with a pseudogap in the density of states, such as in underdoped
cuprates. In nearly two-dimensional systems, where the superconducting
transition temperature is reduced from the mean-field BCS value, Cooper pairs
may be present as slow fluctuations of the BCS pairing field. Using the
self-consistent T-matrix (fluctuation exchange) approach I find that the
fermion spectral weight exhibits two BCS-like peaks, broadened by fluctuations
of the pairing field amplitude. The density of states becomes suppressed near
the Fermi energy, which allows for long-lived low-energy Cooper pairs that
propagate as a sound-like mode with a mass. A self-consistency requirement,
linking the width of the pseudogap to the intensity of the pairing field,
determines the pair condensation temperature. In nearly two-dimensional
systems, it is proportional to the degeneracy temperature of the fermions, with
a small prefactor that vanishes in two dimensions.Comment: LaTeX (prbbib.sty included), 24 pages, 4 PostScript figures To appear
in Phys.Rev.
Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions
For an electron gas with delta-function attraction we investigate the
crossover from weak- to strong-coupling supercoductivity in two and three
dimensions. We derive analytic expressions for the stiffness of phase
fluctuations and set up effective XY-models which serve to determine
nonperturbatively the temperature of phase decoherence where superconductivity
breaks down. We find the transition temperature T_c as a monotonous function of
the coupling strength and carrier density both in two and three dimensions, and
give analytic formulas for the merging of the temperature of phase decoherence
with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address
[email protected] in June and July 1999 were lost in a computer crash, so if
your comments were not answered please send them once mor
Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects
We investigate the behavior of the superconducting transition temperature
within a previously developed BCS-Bose Einstein crossover picture. This
picture, based on a decoupling scheme of Kadanoff and Martin, further extended
by Patton, can be used to derive a simple form for the superconducting
transition temperature in the presence of a pseudogap. We extend previous work
which addressed the case of s-wave pairing in jellium, to explore the solutions
for T_c as a function of variable coupling in more physically relevant
situations. We thereby ascertain the effects of reduced dimensionality,
periodic lattices and a d-wave pairing interaction. Implications for the
cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published
versio
Variational Monte Carlo Study of Spin-Gapped Normal State and BCS-BEC Crossover in Two-Dimensional Attractive Hubbard Model
We study properties of normal, superconducting (SC) and CDW states for an
attractive Hubbard model on the square lattice, using a variational Monte Carlo
method. In trial wave functions, we introduce an interspinon binding factor,
indispensable to induce a spin-gap transition in the normal state, in addition
to the onsite attractive and intersite repulsive factors. It is found that, in
the normal state, as the interaction strength increases, a first-order
spin-gap transition arises at (: band width) from a
Fermi liquid to a spin-gapped state, which is conductive through hopping of
doublons. In the SC state, we confirm by analysis of various quantities that
the mechanism of superconductivity undergoes a smooth crossover at around
|U_{\ma{co}}|\sim |U_{\rm c}| from a BCS type to a Bose-Einstein condensation
(BEC) type, as increases. For |U|<|U_{\ma{co}}|, quantities such as
the condensation energy, a SC correlation function and the condensate fraction
of onsite pairs exhibit behavior of , as expected from the
BCS theory. For |U|>|U_{\ma{co}}|, quantities such as the energy gain in the
SC transition and superfluid stiffness, which is related to the cost of phase
coherence, behave as , as expected in a bosonic
scheme. In this regime, the SC transition is induced by a gain in kinetic
energy, in contrast with the BCS theory. We refer to the relevance to the
pseudogap in cuprate superconductors.Comment: 14 pages, 22 figures, submitted to Journal of the Physical Society of
Japa
Optical Absorption of an Interacting Many-Polaron Gas
The optical absorption of a many (continuum) polaron gas is derived in the
framework of a variational approach at zero temperature and weak or
intermediate electron-phonon coupling strength. We derive a compact formula for
the optical conductivity of the many-polaron system taking into account
many-body effects in the electron or hole system. Within the method presented
here, these effects are contained completely in the dynamical structure factor
of the electron or hole system. This allows to build on well-established
studies of the interacting electron gas. Based on this approach a novel feature
in the absorption spectrum of the many-polaron gas, related to the emission of
a plasmon together with a phonon, is identified. As an application and
illustration of the technique, we compare the theoretical many-polaron optical
absorption spectrum as derived in the present work with the `d-band' absorption
feature in NdCuO. Similarities are shown between the theoretically
and the experimentally derived first frequency moment of the optical absorption
of a family of differently doped NdCeCuO materials.Comment: 24 pages, 5 figures; revised and expanded versio
The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau Theory
It is well known that conventional pairing fluctuation theory at the Hartree
level leads to a normal state pseudogap in the fermionic spectrum. Our goal is
to extend this Hartree approximated scheme to arrive at a generalized mean
field theory of pseudogapped superconductors for all temperatures . While an
equivalent approach to the pseudogap has been derived elsewhere using a more
formal Green's function decoupling scheme, in this paper we re-interpret this
mean field theory and BCS theory as well, and demonstrate how they naturally
relate to ideal Bose gas condensation. Here we recast the Hartree approximated
Ginzburg-Landau self consistent equations in a T-matrix form. This recasting
makes it possible to consider arbitrarily strong attractive coupling, where
bosonic degrees of freedom appear at considerably above . The
implications for transport both above and below are discussed. Below
we find two types of contributions. Those associated with fermionic
excitations have the usual BCS functional form. That they depend on the
magnitude of the excitation gap, nevertheless, leads to rather atypical
transport properties in the strong coupling limit, where this gap (as distinct
from the order parameter) is virtually -independent. In addition, there are
bosonic terms arising from non-condensed pairs whose transport properties are
shown here to be reasonably well described by an effective time-dependent
Ginzburg-Landau theory.Comment: 14 pages, 5 figures, REVTeX4, submitted to PRB; clarification of the
diagrammatic technique added, one figure update
Signatures of polaronic excitations in quasi-one-dimensional LaTiO
The optical properties of quasi-one-dimensional metallic LaTiO are
studied for the polarization along the and axes. With decreasing
temperature modes appear along both directions suggestive for a phase
transition. The broadness of these modes along the conducting axis might be due
to the coupling of the phonons to low-energy electronic excitations across an
energy gap. We observe a pronounced midinfrared band with a temperature
dependence consistent with (interacting) polaron models. The polaronic picture
is corroborated by the presence of strong electron-phonon coupling and the
temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure
- …