430 research outputs found

    Generic Finite Size Enhancement of Pairing in Mesoscopic Fermi Systems

    Get PDF
    The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.Comment: Updated version 17/02/0

    Evaluation of the BCS Approximation for the Attractive Hubbard Model in One Dimension

    Full text link
    The ground state energy and energy gap to the first excited state are calculated for the attractive Hubbard model in one dimension using both the Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are provided as a function of coupling strength and electron density. While the ground state energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of magnitude, particularly at half-filling. Finite size effects are also briefly discussed for cases where an exact solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure

    Density-induced BCS to Bose-Einstein crossover

    Get PDF
    We investigate the zero-temperature BCS to Bose-Einstein crossover at the mean-field level, by driving it with the attractive potential and the particle density.We emphasize specifically the role played by the particle density in this crossover.Three different interparticle potentials are considered for the continuum model in three spatial dimensions, while both s- and d-wave solutions are analyzed for the attractive (extended) Hubbard model on a two-dimensional square lattice. For this model the peculiar behavior of the crossover for the d-wave solution is discussed.In particular, in the strong-coupling limit when approaching half filling we evidence the occurrence of strong correlations among antiparallel-spin fermions belonging to different composite bosons, which give rise to a quasi-long-range antiferromagnetic order in this limit.Comment: 10 pages, 5 enclosed figure

    Non-interacting Cooper pairs inside a pseudogap

    Full text link
    I present a simple analytical model describing the normal state of a superconductor with a pseudogap in the density of states, such as in underdoped cuprates. In nearly two-dimensional systems, where the superconducting transition temperature is reduced from the mean-field BCS value, Cooper pairs may be present as slow fluctuations of the BCS pairing field. Using the self-consistent T-matrix (fluctuation exchange) approach I find that the fermion spectral weight exhibits two BCS-like peaks, broadened by fluctuations of the pairing field amplitude. The density of states becomes suppressed near the Fermi energy, which allows for long-lived low-energy Cooper pairs that propagate as a sound-like mode with a mass. A self-consistency requirement, linking the width of the pseudogap to the intensity of the pairing field, determines the pair condensation temperature. In nearly two-dimensional systems, it is proportional to the degeneracy temperature of the fermions, with a small prefactor that vanishes in two dimensions.Comment: LaTeX (prbbib.sty included), 24 pages, 4 PostScript figures To appear in Phys.Rev.

    Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions

    Full text link
    For an electron gas with delta-function attraction we investigate the crossover from weak- to strong-coupling supercoductivity in two and three dimensions. We derive analytic expressions for the stiffness of phase fluctuations and set up effective XY-models which serve to determine nonperturbatively the temperature of phase decoherence where superconductivity breaks down. We find the transition temperature T_c as a monotonous function of the coupling strength and carrier density both in two and three dimensions, and give analytic formulas for the merging of the temperature of phase decoherence with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address [email protected] in June and July 1999 were lost in a computer crash, so if your comments were not answered please send them once mor

    Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects

    Full text link
    We investigate the behavior of the superconducting transition temperature within a previously developed BCS-Bose Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin, further extended by Patton, can be used to derive a simple form for the superconducting transition temperature in the presence of a pseudogap. We extend previous work which addressed the case of s-wave pairing in jellium, to explore the solutions for T_c as a function of variable coupling in more physically relevant situations. We thereby ascertain the effects of reduced dimensionality, periodic lattices and a d-wave pairing interaction. Implications for the cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published versio

    Variational Monte Carlo Study of Spin-Gapped Normal State and BCS-BEC Crossover in Two-Dimensional Attractive Hubbard Model

    Full text link
    We study properties of normal, superconducting (SC) and CDW states for an attractive Hubbard model on the square lattice, using a variational Monte Carlo method. In trial wave functions, we introduce an interspinon binding factor, indispensable to induce a spin-gap transition in the normal state, in addition to the onsite attractive and intersite repulsive factors. It is found that, in the normal state, as the interaction strength U/t|U|/t increases, a first-order spin-gap transition arises at UcW|U_{\rm c}|\sim W (WW: band width) from a Fermi liquid to a spin-gapped state, which is conductive through hopping of doublons. In the SC state, we confirm by analysis of various quantities that the mechanism of superconductivity undergoes a smooth crossover at around |U_{\ma{co}}|\sim |U_{\rm c}| from a BCS type to a Bose-Einstein condensation (BEC) type, as U/t|U|/t increases. For |U|<|U_{\ma{co}}|, quantities such as the condensation energy, a SC correlation function and the condensate fraction of onsite pairs exhibit behavior of exp(t/U)\sim \exp(-t/|U|), as expected from the BCS theory. For |U|>|U_{\ma{co}}|, quantities such as the energy gain in the SC transition and superfluid stiffness, which is related to the cost of phase coherence, behave as t2/UTc\sim t^2/|U|\propto T_{\rm c}, as expected in a bosonic scheme. In this regime, the SC transition is induced by a gain in kinetic energy, in contrast with the BCS theory. We refer to the relevance to the pseudogap in cuprate superconductors.Comment: 14 pages, 22 figures, submitted to Journal of the Physical Society of Japa

    Optical Absorption of an Interacting Many-Polaron Gas

    Full text link
    The optical absorption of a many (continuum) polaron gas is derived in the framework of a variational approach at zero temperature and weak or intermediate electron-phonon coupling strength. We derive a compact formula for the optical conductivity of the many-polaron system taking into account many-body effects in the electron or hole system. Within the method presented here, these effects are contained completely in the dynamical structure factor of the electron or hole system. This allows to build on well-established studies of the interacting electron gas. Based on this approach a novel feature in the absorption spectrum of the many-polaron gas, related to the emission of a plasmon together with a phonon, is identified. As an application and illustration of the technique, we compare the theoretical many-polaron optical absorption spectrum as derived in the present work with the `d-band' absorption feature in Nd2_{2}CuO2_{2}. Similarities are shown between the theoretically and the experimentally derived first frequency moment of the optical absorption of a family of differently doped Nd2x_{2-x}Cex_{x}CuO4y_{4-y} materials.Comment: 24 pages, 5 figures; revised and expanded versio

    The pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau Theory

    Full text link
    It is well known that conventional pairing fluctuation theory at the Hartree level leads to a normal state pseudogap in the fermionic spectrum. Our goal is to extend this Hartree approximated scheme to arrive at a generalized mean field theory of pseudogapped superconductors for all temperatures TT. While an equivalent approach to the pseudogap has been derived elsewhere using a more formal Green's function decoupling scheme, in this paper we re-interpret this mean field theory and BCS theory as well, and demonstrate how they naturally relate to ideal Bose gas condensation. Here we recast the Hartree approximated Ginzburg-Landau self consistent equations in a T-matrix form. This recasting makes it possible to consider arbitrarily strong attractive coupling, where bosonic degrees of freedom appear at T T^* considerably above TcT_c. The implications for transport both above and below TcT_c are discussed. Below TcT_c we find two types of contributions. Those associated with fermionic excitations have the usual BCS functional form. That they depend on the magnitude of the excitation gap, nevertheless, leads to rather atypical transport properties in the strong coupling limit, where this gap (as distinct from the order parameter) is virtually TT-independent. In addition, there are bosonic terms arising from non-condensed pairs whose transport properties are shown here to be reasonably well described by an effective time-dependent Ginzburg-Landau theory.Comment: 14 pages, 5 figures, REVTeX4, submitted to PRB; clarification of the diagrammatic technique added, one figure update

    Signatures of polaronic excitations in quasi-one-dimensional LaTiO3.41_{3.41}

    Full text link
    The optical properties of quasi-one-dimensional metallic LaTiO3.41_{3.41} are studied for the polarization along the aa and bb axes. With decreasing temperature modes appear along both directions suggestive for a phase transition. The broadness of these modes along the conducting axis might be due to the coupling of the phonons to low-energy electronic excitations across an energy gap. We observe a pronounced midinfrared band with a temperature dependence consistent with (interacting) polaron models. The polaronic picture is corroborated by the presence of strong electron-phonon coupling and the temperature dependence of the dc conductivity.Comment: 5 pages, 5 figure
    corecore