The ground state energy and energy gap to the first excited state are
calculated for the attractive Hubbard model in one dimension using both the
Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are
provided as a function of coupling strength and electron density. While the
ground state energies are always in very good agreement, the BCS energy gap is
sometimes incorrect by an order of magnitude, particularly at half-filling.
Finite size effects are also briefly discussed for cases where an exact
solution in the thermodynamic limit is not possible. In general, the BCS result
for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure