19,780 research outputs found
Nagel's Criticism Of Physicalism
The philosopher Thomas Nagel is well known for being skeptical of the claim that psychological states are purely physical. When physical science gives us a complete description of the world, it leaves out the point of view from which each of us is aware of their perspective on the world. This paper is a critical treatment of Nagel's problem with physicalism. We ignore the vast literature on the self
Steady-state conduction in self-similar billiards
The self-similar Lorentz billiard channel is a spatially extended
deterministic dynamical system which consists of an infinite one-dimensional
sequence of cells whose sizes increase monotonically according to their
indices. This special geometry induces a nonequilibrium stationary state with
particles flowing steadily from the small to the large scales. The
corresponding invariant measure has fractal properties reflected by the
phase-space contraction rate of the dynamics restricted to a single cell with
appropriate boundary conditions. In the near-equilibrium limit, we find
numerical agreement between this quantity and the entropy production rate as
specified by thermodynamics
Direct conversion of rheological compliance measurements into storage and loss moduli
We remove the need for Laplace/inverse-Laplace transformations of
experimental data, by presenting a direct and straightforward mathematical
procedure for obtaining frequency-dependent storage and loss moduli
( and respectively), from time-dependent experimental
measurements. The procedure is applicable to ordinary rheological creep
(stress-step) measurements, as well as all microrheological techniques, whether
they access a Brownian mean-square displacement, or a forced compliance. Data
can be substituted directly into our simple formula, thus eliminating
traditional fitting and smoothing procedures that disguise relevant
experimental noise.Comment: 4 page
Fluid-membrane tethers: minimal surfaces and elastic boundary layers
Thin cylindrical tethers are common lipid bilayer membrane structures,
arising in situations ranging from micromanipulation experiments on artificial
vesicles to the dynamic structure of the Golgi apparatus. We study the shape
and formation of a tether in terms of the classical soap-film problem, which is
applied to the case of a membrane disk under tension subject to a point force.
A tether forms from the elastic boundary layer near the point of application of
the force, for sufficiently large displacement. Analytic results for various
aspects of the membrane shape are given.Comment: 12 page
- …