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Abstract

Shiga toxin-converting (Stx) phages are viruses of the bacterium Escherichia coli.
They are ‘temperate’ which means that they may replicate either via the lytic or the
lysogenic pathway. A molecular switch determines which of the two pathways is se-
lected. Following lysis of the host cell, toxin molecules are released which can cause
potentially fatal diseases in humans.

Three different timescales are considered: cellular time, ecological time and evo-
lutionary time. In ecological time, a population dynamical model is used to derive
conditions under which virulent phages (i.e. phages which are only able to replicate
lytically) can coexist with temperate phages, and conditions when temperate phages
can invade a population of virulent phages and vice versa. The outcome of competition
between temperate and virulent phage strains depends on the model parameter values,
in particular the relative adsorption rates and burst sizes of the two strains, and also
the probability of lysogeny and the induction rate of the temperate phages.

The population dynamical model then forms the basis for modelling the evolution of
temperate phages, using an adaptive dynamics approach. Two key parameters relating
to the temperate phage population (namely the probability of lysogeny and the lysogen
induction rate) are allowed to evolve over time. The adaptive dynamics analysis is
used to identify evolutionary singularities which evolution is either directed towards
or away from. It is shown that attractor and repellor singularities do arise. However,
evolutionary branching does not occur within this framework.

At the cellular level, molecular models are used to consider three problems. Firstly,
the stability of Stx lysogens and lysogens of the related phage lambda is modelled
and compared. The modelling results show that certain known differences between the
molecular switches of Stx and lambda phages can account for the lower stability of
certain Stx phages,

The same model is also used to determine the impact of selected environmental
factors (nutrient level and temperature) on lysogen stability. An increase in nutrient
level or temperature will increase the growth rate of the host cell, which tends to

increase the stability of the lysogen. However, it is found that there are circumstances



in which increases in nutrient level or temperature can result in a decrease in lysogen
stability.

Finally, a stochastic modelling approach is used to compare the probability of
lysogeny in Stx and lambda phages. The results show that a. weaker binding energy at
the molecular switch in Stx phages leads to a lower probability of lysogeny, and hence

a higher rate of toxin release.
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Chapter 1

Background

1.1 Introduction to phages

Bacteriophages (also known as phages) are viruses which infect bacteria. They
were discovered independently by the bacteriologists Frederick Twort (1915) and Felix
d’Herelle (1917). D’llerelle coined the name bacteriophage, which means ‘bacteria-
eater’ (the Greek word gayew - phagein -.is the verb ‘to eat’).

A typical phage consists of a head, which contains the genetic material, and a tail.
Bacterial infection begins when the phage tail attaches itself to the outer cell wall of the 4
bacteria, a process known as adsorption. The phage genome (a molecule of either DNA
or RNA, depending on the phage type) then passes through the tail and is inserted into
the bacterial cell. There are then two possible pathways by which the infection may
subsequently proceed, known as the lytic and lysogenic pathways.

The lytic pathway involves the construction of many copies of the original phage,
followed by the bursting open (lysis) of the host cell and the release of the new phage
particles; in this case the host is destroyed. In a lysogenic infection, the phage genome
is inserted into the bacterial genome (and is then known as a prophage). In this case
the host cell survives and is known as a lysogen. Following normal cell division of the
host, the two daughter cells each contain a copy of the prophage within their genomes.
Lysogens are generally immune to superinfection by phages of the same strain as the
resident prophage.

Phage strains may be either virulent or temperate. A virulent phage is only capable
of replicating itself via the lytic pathway, while temperate phages are capable of both
lytic and lysogenic reproduction. A temperate phage which initially forms a lysogen
with its host may later initiate the lytic cycle via a process known as induction. One
of the most extensively studied temperate phages is lambda (A) phage, a virus of
Escherichia coli (E. coli) first isolated by Esther Lederberg (1951). The mechanisms

by which phage lambda selects between the lytic and lysogenic pathways, and by which



it maintains the lysogenic state, have bheen determined at the level of individual genes
and proteins (Ptashne, 1986).

1.2 Stx phages

Shiga toxin-producing E. coli (STEC), and in particular the Q157:H7 serotype, are
well known human pathogens. The STEC O157:H7 scrotype was discovered to be a
foodborne pathogen in 1982, when it was identified as the cause of an outbreak of
hemorrhagic colitis in Oregon and Michigan in the U.S.A. (Karmali et al.. 1983: Riley
et al., 1983). Since then, it has been associated with further outbreaks of hemorrhagic
colitis and other discases, including hemolytic uremic syndrome (HUS). which can be
fatal in humans. For example, E. coli O157:H7 infections occurred in primary schools
in Japan in 1996 and 1998, affecting over 6,000 children and resulting in two deaths
from HUS (Watarai et al., 1998). Healthy cattle constitute a major reservoir of STEC,
and infection in humnans is often the result of the contamination of food or water by
manure (Gyles, 2007).

The major virulence factors of STEC are Shiga toxin 1 (Stx1) and Shiga toxin 2
(Stx2). The genome sequence of Stx1 is almost identical to that of the S. dysenteriae
toxin, while there is a greater degree of diversity in the sequence of Stx2. The sequence
identity of some Stx2 variants to the S. dysenteriae toxin is only 60% (Allison, 2007).
The ability of E. coli to produce Shiga toxins is conferred by temperate lambdoid phages
known as Shiga toxin-converting (Stx) phages. The term ‘lambdoid’ signifies that these
phages share a similar gehome structure and life history with phage lambda (Ptashne,
2004). Each Stx phage encodes only one Shiga toxin, which is cither of type Stx1 or
Stx2 (Allison, 2007); for example, the strains known as 933W and H-19B encode Stx2
and Stx1 respectively.

It has been reported that frecly existing Stx phages persist in the environment (es-
pecially soil and water) more successfully than their bacterial hosts, and also that they
are more resistant to chlorination, heat treatment and composting processes (Muniesa
et al, 1999; Johanessen et al 2005), thus promoting the survival of str genes. In six
river water studies, it was found that over a one week period the numbers of E. coli
cells decreased between 2 and 3 log units while the numbers of free Stx phages de-
creased between 1 and 2 log units (Muniesa et al, 1999). Free Stx phages may begin
the infection process as soon as a suitable host cell is encountered.

An E. colicell which has been infected by an Stx phage will only release Shiga toxins
when lysis occurs. Thus, if the lysogenic pathway is selected there will be no release
of toxins initially. However, if the lysogen is later induced (i.e. the lytic pathway is

initiated), then toxins will be released when the host cell is lysed. Thus, the proportion



of infections which result in lysogeny (the “probability of lysogeny’), and the rate at
which lysogens are induced (the ‘induction rate’), have an important impact on the
rate at which Shiga toxins are released into the environment. Studies have showu that
lysogens of 933W and H19-B are subject to higher rates of induction than lambda
lysogens (Livny and Friedman, 2004). In Stx phages, a genetic switch similar to that
of phage lambda determines whether the lytic or lysogenic pathway is sclected.

Using models at both the population and the molecular levels, this thesis investi-
gates some of the factors which influence the probability of lysogeny and the induction
rate of Stx phages over three different timescales: cellular time (Chapters 4. 5 and 6),
ecological time (Chapter 2) and evolutionary time (Chapter 3). Over cellular time, the
levels of key regulatory proteins within a single infected host cell are modelled, while
populations of hacteria and phages and their interactions are considered in ecological
time. Over evolutionary time, the evolution of characteristics within a phage popula-
tion is modelled. The following sections introduce the main mathematical techniques
which will be used, with the help of some examples, beginning with a consideration of

population dynamics.

1.3 Population Dynamics of Bacteria and Virulent Phages

In the Malthusian growth model, named after Thomas I\'Ialt.hus (1766-1834). the

size of a population at time ¢ can be expressed as

B(t) = Bge™

where By is the initial population size and r is a constant known as the growth rate.

Differentiating with respect to ¢, we obtain

B'(t) = rBye™ = rB(t)

so that the rate at which the population size increases is proportional to the current
population size, This is also known as exponential growth.

Exponential growth of a population cannot continue indefinitely since the supply of
resources needed for growth, such as food, is limited. In the logistic model of population
growth (Verhulst, 1838) there is an initial period of (approximately) exponential growth,
but over time the growth slows down and eventually stops altogether. This model is

given by the following first-order differential equation:

dB
7 rB(1 — =)

Ql &



where r and C (the ‘carrying capacity’) are constamts. This model has two steady
states or equilibria (obtained by setting the above equation equal to zero): Bf =0 and
By =C.

Novick and Szilard (1950) developed a device known as a chemostat which may be
used to maintain a bacterial population at a steady state. The bacteria are held in a
container called the ‘growth tube’. A supply of nutrients flows into the growth tube
from a storage tank at a rate w. Bacteria and unused nutrient also flow out of the
growtll tube at a rate of w so that the amount of fluid in the tube remains constant.
The nutrient contains high concentrations of all but one of the growth factors needed by
the bacteria for growth. The single exception is the controlling growth factor. whose
concentration is relatively low. The concentration of the controlling growth factor
within the nutrient will determine the concentration of bacteria at the steady state.

The following expression was proposed by Monod (1949) for the per capita bacterial

growth rate (') in the presence of a limiting nutrient or resource (R):

rR

(% R) = ———
(R) k+ R
where r is the maximun growth rate and & is the nutrient concentration at which the -
population grows at half of the maximun rate. This model will appear in the chemostat

models of phage and bacteria interactions discussed later on. -

1.3.1 A model of bacteria and virulent phages

Campbell (1961) modelled populations of virulent phages (V') and their bacterial

hosts (B) in a chemostat as follows:

dB B :

— = B1-35)-wB-4dBV (1.1)
41/

% = OBB(t -V (t = 1) = 6BV — kyV —wV (1.2)

Here the normal growth of the bacteria is assumed to be logistic with growth rate r and
carrying capacity C'. The rate at which bacteria are infected by phages, 4. is known as
the adsorption rate. The burst size /3 is the nuinber of new phages which are released
following lysis of the host cell. The chemostat flow rate is denoted by w. Phages are
spontanecously deactiveated at a rate of ky-. The time delay between the initial infection
of a cell and the release of new phage particles is denoted by I, and the terms B(t — 1)
and V(t — [) are the values of B and V at time ¢t — [.

By setting (1.1) and (1.2) equal to zero, with B(t — )V (t — ) = BV, Campbell
(1961) obtained four possible equilibria:



i) B=0,V=0
(i) B=0,V =V (in the special case ky: = w = 0)
GV = . 3 — W
(iii) 0.3=C (l r)
. . kv +w r w kv +w
) B=rr—-—wV=—|C(]l-=)}) - ——— 1.3
(iv) TCESR [ (r-5) e 1)] (1.3)

Given a set of such equilibria, it is natural to ask under what conditions each equilib-
rium is feasible (i.e. B and V are both non-negative) and stable (i.e. given a small
perturbation to the system at equilibrium, the system will return to the original equi-

librium). The feasibility conditions for the four equilibria arc as follows:

(i)  Always feasible
(ii) Feasible provided V4 > 0
(iii) Feasible provided w/r < 1

(iv) Feasible provided 3> 1 and Cd 3 - 1)(1 —w/r) > ky +w

The stability of an equilibrium can be determined from the eigenvalues of the Ja-
cobian matrix. In order to simplify the analysis we can ignore the time delay hetween
infection and lysis (i.e. set { = 0 in (1.1) and (1.2) so that B(t - )V (t - 1) = BV),

then the Jacobian is given by:

. r—2rB/C —w -6V -8B )
< V(B -1) SB(B-1)—ky —w

The stability conditions are obtained by requiring the eigenvalues of the Jacobian to

be negative. For the equilibria (i) to (iii), these conditions turn out to be:

(i) kv+w>0andr<w
(i) kyv+w>0and Vo > (r —w)/d (which cannot be satisfied, since by =w =0
for this equilibrium)

(i) 7> wand §C(Br + w) > (63Cw + §Cr + kyr + wr)

The stability conditions for the fourth equilibrium are rather lengthy and are therefore
not repeated here.
Another question we can ask is whether it is possible for mutant strains of bacteria

to invade a stable equilibrium of type (iv), consisting of a resident bacterial strain and



a resident phage strain. Let B) and V' he the resident strains, and let B, represent a
mutant bacterial strain. Let strains B) and By be subject to different adsorption rates
(41 and dy respectively) and growth rates (r; and ry respectively). Consider a small
number of invading bacterial cells from By. Using (1.1), we can write down the rate at

which this mutant population will grow as follows:

7'2(1 Bl/(') w (52\7 (1.-’1)

where By (> 0) and V (> 0) are given by (1.3). If the above expression is greater than
zero, then the mutants will be able to invade.

Similarly, suppose that B and V) are the resident strains, and that a small number
of mutant phages from strain V, emerge in the population. If V| and V; are subject to
different deactivation rates (kyvi and kyg) and have different burst sizes (61 and 32).

then using (1.2) the rate at which the mutant population will grow is given by:

6BoB — 6B ~ kyy — w (1.5)

where B (> 0) is given by the expression in (1.3). If the above quantity is positive,

then the mutant phages can invade.

1.3.2 A model of resources, bacteria and virulent phages

Levin et al (1977) présent a model of virulent phages (V) and bacteria (B) which
includes a term representing the availability of resources (R) required by the bacte-
ria. Another term, B,, represents infected bacteria which have not yet been lysed.
The model allows for multiple types of each population, but with one resource, one

bacterium and one phage it reduces to:

dR
dt
aB

dat
dB,
dat
dv
dt

w(Ro — R) ~ $(R)(B + B.) (1.6)

= B¢(R)/eg —wB — 5BV (1.7)

Il

BV —wB, — e Bt -V (t-1) (1.8)

BBt - OVt -1) - wV - 6BV (1.9)

lHere ¢ is the bacterial growth function (not specified), and its value depends on the
availability of resources. Resources are assumed to flow into the habitat from a reservoir

at a rate w; unused resources also flow out of the habitat at the same rate w. The



concentration of resources in the reservoir is denoted by Ry. The amount of resources
which a bacterium must consune in order to replicate (i.e. divide into two daughter
cells) is ep, and the other parameters are the adsorption rate (4) and the burst size
(8).

This model formed the basis for later work by Stewart and Levin (1984) in which
time delays between infection and lysis are ignored (hence neither the B, population
nor the parameter | appear), but populations of temperate phages and their lysogens
are introduced; this later model will be analysed in detail in Chapter 2. The following
section illustrates how a population dynamical model can be used to model evolution

within the framework of adaptive dynainics, which is the subject of Chapter 3.

1.4 Adaptive Dynamics

The theory of Adaptive Dynamics (Geritz et al, 1998) is concerned with the evolu-
tion of a population whose individuals are subject to small mutations. Suppose that
there is a resident population of identical individuals which reproduce asexually, such
that offspring are identical to the parent. We are interested in the evolution of a par-
ticular one-dimensional trait or strategy. Initially. the resident population is assumed
to have reached a locally stable equilibrium (the demographic attractor), and so all
individuals have the same strategy, denoted by z.

The long-term exponential growth rate of the population is denoted by r(r, E,),
where [, is the environment given that all individuals follow strategy z. At the demo-
graphic attractor, we have r(x, E;) = 0.

Now suppose that the population is subject to mutations, so that an offspring
may be born with a different strategy to its parent. We assume that such mutations are
small and infrequent, and therefore the effect on the overall population will be negligible,
initially. If a particular mutation represents an improvement in fitness compared to the
resident strategy, then this mutant strategy may begin to spread within the population.

Suppose that a small number of mutants emerge with strategy y. At this stage,
the predominant population behaviour is still determined by the resident strategy z,

and so the mutant fitness function can be written as

'sr(y) = T(y, E.‘L‘)

If 5:(y) < 0 then the mutant population will simply die out. If s,(y) > 0, then
the small number of mutants may still die out owing to random extinctions; however,
there is also the possibility that the mutant population will begin to grow. If s.(y) > 0

and sy(x) < 0, then once the mutant population becomes large enough. the resident
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population will not be able to recover and will eventually be replaced by the mutant
population. On the other hand, if both s,(y) and s,(x) are positive then the two
populations may coexist.

Since mutations are assumed to be swall, we can write down the following

lincar approximation of the mutant fitness:

sely) = sa(2) + D(a)(y — 2)

where D(x) is the local fitness gradient, given by

D(7) _ (')'Q:r(y)

T

We know that sz(x) = r(z,E;) = 0, and so it is the sign of D(x) which
determines whether a particular mutant may invade. If D(x) is positive then a mutant
strategy y may invade if y > x, and it may not invade if y < x. Similarly, if D(x) is
negative then a mutant strategy y will only be able to invade if y < .

Evolution will proceed over time in the direction of the local fitness gradient
until either (i) the maximum or minimum value of x is reached, or (ii) a value of « is
reached at which the local fitness gradient is zero. If D(z) = 0 then x is said to be an

‘evolutionary singularity’, and is denoted by z*.

1.4.1 Pairwise invasibility plots

Pairwise invasibility plots (PIPs) (Christiansen and Loeschcke, 1980; Metz et al,
1992) provide a geometrical method of locating evolutionary singularities. A PIP shows
the regions in (z,y) space in which the function s, (y) is positive, and the regions where
it is negative. An example is shown in Figure 1.1.

For a given resident strategy, x; say, we can see which mutant strategies may
invade by drawing a vertical line through z;. Those parts of the line which fall in
a region of the PIP labelled ‘4’ indicate mutant strategies with positive fitness, and
therefore these mutants are capable of invading.

On the principal diagonal of a PIP the mutant and resident strategies are
the same, and so the mutant fitness is zero along this line. The sign of the local
fitness function can be deduced from the pattern of signs around the principal diagonal.
Consider a particular point on the principal diagonal, (z1,21), and suppose that there
is a ‘+’ above this point and a *-’ below. In this case, the mutant fitness is increasing
as y increases and therefore the sign of D(x) is positive. Similarly, for a point on the
principal diagonal with a ‘- above and a ‘4’ below, the sign of the local fitness gradient

will be negative.
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Figure 1.1: An example of a Pairwise Invasibility Plot. The horizontal axis correspounds
to the resident strategy (x) and the vertical axis corresponds to the mutant strategy
(y). In each region of the plot, the sign of the mutant fitness function is indicated.

1.4.2 Properties of evolutionary singularities

A point at which the principal diagonai in the PIP intersects with another
line along which s;(y) = 0 corresponds to an evolutionary singularity, 2*. At the point
(r*,2*) on the principal diagonal, the signs above and below are the same (i.e. both
positive or both negative) and so the value of D(x*) must be zero. In other words,
at a singularity z* the mutant fitness function reaches either a local maximum or a
local minimum value; the pattern of signs around (z*,z*) indicates which of these
possibilities is the case, as described below.

If the regions above and below the point (z*, 2*) are labelled -’ in the PIP,
then we know that s,(y) as a function of y reaches a local maximum at the singularity,

and therefore the second-order derivative of s;(y) with respect to y must be negative:

%52 (y)

2 <0 (1.10)

y=r=zx*
In this case any nearby mutant will have lower fitness than the singularity 2*, and z*
is said to be ES-stable (ESS; Maynard Smith and Price, 1973). Thus a nearby mutant
cannot invade an ESS singularity, and once such a singularity has been reached no
further evolutionary change is possible.

The singularity 2* is convergence-stable (CS; Eshel, 1983; Christiansen, 1991)
if a nearby resident population can be invaded by a mutant which is even closer to

the singularity. If there is a neighbourhood of z* such that s.(y) > 0 for all 2 and y
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satisfying either x <y < z* or 2* < y < xa, then x* is CS. On the PIP there will be
a ‘+’ above and a ‘-’ below the leading diagonal for » < y < z*, and a *-’ above and
a ‘4’ below the leading diagonal for 2* < y < x. Thus evolution will proceed towards
the singularity.

If 2™ is CS, then the sign of D(r) changes from positive to negative at this

point, i.c. :

dD(x) Psely) | Psily)
= ot : 1.11
dx dady t Dy <4y (1.11)

y=r=a*

y=r=r*

Using the following relationship (Geritz et al, 1998)

s, (1) 7?5, () P%s, (y)
)

—— — — = ()
H2? Ardy Oy
we can re-write the CS condition as:
E)"’.em(y) 6)25-,(3/)
9 |, Oy | e

Given the definitions of the ESS and CS properties, we are now able to dis- -

tinguish between different types of evolutionary singularity.

1.4.3 Evolutionary outcomes

Tle properties of ESS.and CS enable us to identify four types of singularity, namely:
attractors, branching points, repellors, and ‘Garden of Eden’ points.

An attractor is a singularity which is both ESS and CS. Evolution is directed
towards an attractor, and once the attractor is reached no further evolutionary change
is possible. Thus attractors are associated with evolution towards intermediate values
of the evolving parameter

Branching points are CS but not ESS. Evolution proceeds towards a branching
point, but once this point is reached it is possible for nearby mutants to invade. This
may lead to evolutionary branching and coexistence of different strains.

Repellors are neither ESS nor CS. If the resident population is at or close to a
repellor, evolution will be directed away from this point. Repellors are associated with
evolution towards extreme values of the evolving parameter.

‘Garden of Eden’ points are ESS but not CS. These are strategies which are

unbeatable, but which cannot be reached from any other point via small mutations.
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1.4.4 An example of the use of adaptive dynamics

As a brief and novel example we can consider the evolution of a bacterial population
in the presence of a fixed (i.c. non-evolving) strain of virnlent phages. To do this, we
can return to the Cambell (1961) model of bacteria and virulent phages given by (1.1)
and (1.2), with the assumption of zero time delays (i.e. | = 0 and B(t—-)V (t-1) = BV').
Resident and mutant bacterial strains are denoted by 3; and I3>. and are subject to
different adsorption rates (§; and ) and growth rates (r; and ). In this case the

fitness function is given by (1.4), i.c.

se(y) =l - BI/C) —w =6V (1.12)

where » denotes the resident parameters (r; and ;) and y denotes the mutant pa-
rameters (ro and d3). Now suppose that there is a trade-off relationship f between
the parameters § and r, such that r = f(8) (where f is monotonic increasing). This
represents the assumption that if resistance to infection increases (i.e. the value of the
parameter § decreases), then the ability of the bacteria to take in resources will be
impaired (and so the value of r will also deérease). We can re-write the fitness function

as:
@) = f@)(1-B/C)—w-&V, (1.13)

where z now denotes 1 and y, §3. At an evolutionary singularity é; = é2 = ¢*, we have

55| _ prige) (1 - Bg“) —V(E) =0 (1.14)

dy

*

So the evolutionary singularities are the values of § at which the slope of the trade-
off function is equal to VC/(C — B). Note that for positive values of 13, the value
of (C — B) must be positive (otherwise the right hand side of (1.1) will not be equal
to zero). Once the singularities have been identified, they can be classified according
to whether they satisfy the ESS and CS conditions. Difterentiating s,(y) twice with

respect to the mutant:

6231‘(3/)

a2 =11 -B5/0) (1.15)

Since C > B, the sign of this quantity depends only on the sign of f”(d;). Therefore
(using (1.10)), a singularity 6" is ESS if f”(8*) is negative.
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Differentiating s, (y) with respect to the mutant and again with respect to the

resident yields, and evaluating the result at a singularity 6* vields:

9? s2(y)
dyox |,

2B {f’(é*) f(o'*)] LSO -y -

C | & = 5 5+

Here we have assumed that the resident equilibrium inludes non-zero populations of
both bacteria and phages, so that B is given by (1.3). Then the CS condition is satisfied
if the sign of ij);—’(-)%’l + -{%éﬂ is negative (from (1.11)). Once the ES and CS conditions
have been determined it is possible to classify the singularity as a repellor, attractor,
Lranching point or 'Garden of Eden’.

The above example considers the evolution of the host bacteriuin in the presence of
virulent phages. In Chapter 3 the evolution of temperate phage strains (in the presence
of a single fixed bacterial population) will be modelled using adaptive dynamics, which
is a more complicated problein in the sense that the presence of lysogens be allowed
for, in addition to the bacterial and phage populations.

The following section introduces the topic of molecular level modelling of phage

infections, which is the approach used in Chapters 4, 5 and 6.

1.5 The Lambda Molecular Switch

A genetic switch enables phage lambda to select between lysis and lysogeny, and
also to exit the lysogenic state via induction. A brief description of the components of
the lambda switch is given below, and further details can be found in the relevant later
chapters.

The switch centres around the right operator, Op, on the lambda genome. This
operator includes three binding sites (labelled Ogrl, Og2 and Og3) and is situated
between the genes ¢l and cro. These genes code for the regulatory proteins CI (known
as the repressor) and Cro. Dimers of CI and Cro (i.e. Cl; and Cros molecules) can
bind to the Og binding sites, and thus regulate the expression of the two genes. For
example, with molecules of Cly bound to Ogl and Og2 (and Ogr3 unbound). ¢/ is on
and cro is off. This means that a molecule of the enzyme RNAP can transcribe the
¢l gene to produce a mRNA transcript which can then be translated by a ribosome to
produce a molecule of CI. Similarly, with a Cros molecule bound to Og3 (and Ogl and
ORr2 unbound) el is off and cro is on, leading to the synthesis (via transcription and
translation) of Cro molecules.

The balance between the concentrations of CI and Cro within the cell determines
the outcome of the initial decision between lysis and lysogeny, and also the rate at

which lysogens undergo induction. Following an initial infection event, a high level of
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¢l expression and a low level of ¢ro expression will lead to lysogeny; low ¢l expression
and high cro expression will lead to lysis.

In a lysogen there is a relatively high concentration of Cl,, while the concentration
of Crog is almmost nil. If the Cl, concentration falls, this will lead to the cro gene being
expressed. If synthesis of Croy proceeds at a high enough rate, then this will lead to a
further reduction in the level of Cly, since repression of ¢f will occur more frequently.

Santillan and Mackey (2004) presented the following delay differential equation

model of the lambda switch:

d[i\;td] _ kglv[()R]f;]'\;M([("'12]”"[CT'OQ]T‘”)+k:l[()R]f;;)M([(;"12]”[,[CrOQ]T”)
— (var + ) [Mes]

ﬂl\_d[_;.’."_] = kerolOrlfr([C Loy [Croz)ry) - (var + 1) [ Mer]

%t[d = pet[Metlrs ~ (et + W|C ]

ﬂ%ﬂ = perolMerolrero = (Yero + 1)[Cror)

where M. and M,,, are the concentrations.of the mRNA transcripts of the genes ¢l and
cro respectively, and ClIr and Cror are the totai concentrations (i.e. monomers plus -
dimers) of the proteins CI and Cro. The remaining terms in the model are described
in Chapter 4.

In Chapter 4 the above model is used to find equilibria corresponding to the lyso-
genic state, and the leading eigenvalue of each equilibria is used as a measure of its
stability. The model is then adjusted to allow for known characteristics of the molecular
switch in Stx phages, so that the stability of lambda and Stx lysogens can be compared.

The ability of a prophage to initiate the lytic cycle provides a means of escape from
a host whose survival is threatened by adverse envirommental conditions, such as the
presence of ultra-violet light, low resource levels, or extreme temperatures. Bremer and
Dennis (1996) presented data on the growth rate and chemical composition of E. coli at
different nutrient levels and temperatures. By incorporating this data into the Santillan
and Mackey (2004) model, Chapter 5 investigates the impact of some environmental
conditions on lysogen stability.

Arkin et al (1998) developed a stochastic model of the initial decision between ly-
sis and lysogeny of phage lambda. This model used the Gillespie (1977) algorithm to
siunulate reaction eveuts such as protein dimerization, dissociation and degradation. In
Chapter 6, this model is used as the basis for comparing the probability of lysogeny
in Stx and lambda phages. In order to speed up the simulation process, the algorithm

used incorporates a simplification proposed by Gibson and Bruck (2000) whereby tran-
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scription of genes and translation of mRNA molecules are modelled as single reaction
events, rather than as series of reactions representing movement of the enzyme (in the
case of transcription) or ribosome (in the case of translation) from one nucleotide to

the next.

1.6 Thesis OQutline

To summarize, this thesis considers the dynamics of phage infections over cellular,
ecological, and evolutionary timescales. In the following Chapter an existing population
dynamical model of bacteria and phages (Stewart and Levin, 1984) is analysed in a
more mathematically rigor(nw way than the original authors. Building on the work of
Chapter 2, the methods of Adaptive Dynamics are applied in Chapter 3 to model the
evolution of temperate phages.

Chapter 4 considers whether known differences between the genetie switches of
lainbda and Stx phages can account for the lower stability of Stx lysogens. while
Chapter 5 is concerned with the impact on lysogen stability of envirommental factors
such as temperature and nutrient levels. The stability of lysogens containing multiple
prophages is also considered.

Finally, Chapter 6 extends the findings in Chapter 4 and uses a stochastic model

to compare the probability of lysogeny in lambda and Stx phages.
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Chapter 2

The Population Dynamics of
Temperate and Virulent
Bacteriophages

Stewart and Levin (1984) developed a model of bacteriophage dynamics consisting
of resources (R), sensitive bacteria (S), resistant bacteria (B). lysogens (L), temperate
phage (T'), and virulent phage (V). Four sub-models of the full model exclude one
or more of these populations. Based on a chemostat approach, resources enter at a
rate of wRy per hour {(where Ry is the resource concentration in the input reservoir),
and the contents of the chemostat are washed out at a rate proportional to w. The
parameter ¢ reflects the efficiency with which cells consume the resource. Populations
of lysogens, sensitive bacteria, and resistant bacteria grow at per capita rates v (R),
(1 - ag)yr(R), and (1 — ap)p(R) respectively, where 11, is a monotonic increasing
funtion of R (we generally assume that sensitive cells have a higher growth rate than
lysogens, i.e. g < 0; clearly (1 — ag) and (1 - ap) are positive). Temperate phages
adsorb to sensitive bacteria and lysogens at rates of & ST and 87 LT respectively, where
dr is a constant of proportionality. The corresponding adsorption rates for virulent
phages are dy SV and & LV. Note that lysogens can be infected and lysed by virulent
phages, but a temperate phage which adsorbs to a lysogen is simply lost from the
system. A proportion p of temperate phage adsorptions result in lysogeny, while the
remaining (1 — p) lead to lysis. Lysogens are induced, i.e. enter the lytic cycle, at a
rate of i per hour, and lysogens lose their prophage and thus become sensitive bacteria
again at a rate of £ per hour (¢ is known as the segregation rate). The temperate and
virulent phage burst sizes are represented by the parameters Jr and 3y respectively.

A hyperbolic model (Monod, 1949) is used for the growth function

YL(R) =rR/(R+ k)
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where 7 is the maximum growth rate of lysogens in unlimited resources and & is the
concentration of resources at which cells grow at half of the maximum rate.
Given the above definitions and assumptions, the diflerential equations governing

the system are as follows:

% = w(Ro - R) ~ ey (R)IL+ (1 -as)S+ (1 —ap)B]  (20.0)
‘% = YL(R)L + pbpST — 6y LV — (w+i+6)L (2.0.2)
% = (1= as)vr(R)S - 675T — by SV + €L - wS (2.0.3)
%l; = (1-ap)yL(R)B - wB (2.0.4)
T = iBrL+ pr(1 - p)SrST — 6 LT — T (2.05)
%‘T = Bubv(S+ L)V —wV (2.0.6)

Following Stewart and Levin (1984) we consider four sub-models (Models 1-4) of
the full model, before addressing the full model itself. Much of the material presented
here is adapted from their work (note that the notation used here is modified in order
to be consistent with later material). For each model we identify the possible equilibria, -
and then systematically carry out feasibility and stability analyses for these equilibria,
using Maple as necessary. Thus we have extended the work of Stewart and Levin as
far as possible in order to provide a more complete analysis. This chapter will also lay
the foundations for the modelling of phage evolution in Chapter 3, where the methods
of adaptive dynamics are applied to the sub-model of temperate phages, lysogens, and

sensitive cells (Model 2).

2.1 Model 1. Lysogens and free phage

The simplest model contains only resources (R) and two populations: lysogens (L)
and free temperate phage (T). In this case the possibility of lysogens losing their
prophages is excluded (i.e. the parameter £ = 0), and equations (2.0.1) - (2.0.6) are

reduced to the following:

dR

- = w(Ry ~ R) - e (R)L (2.1.1)
dL
= = VLR)L-il-wL (2.1.2)
dl
d—f = 0L - 6 LT — T (2.1.3)
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with Jacobian matrix

—w) - € t/"IL(R)L ------ ey (R) 0
J = '(,/"L(R)L Yp(R) 1~ w 0 ,
0 i3 — 64T —&rL —w

2.1.1 Deriving and interpreting the equilibria

Setting (2.1.2) equal to zero, we find that cither L = 0 or

YL(R) =i +w, (2.1.4)

at equilibrinm. If L = 0, then (2.1.3) implies that 7 = 0, and (2.1.1) implies that
R = Ry. On the other hand, if ¥ (R) = (i+w) then R = '(/v,jl(i+w). Then from (2.1.1):

L_w(R()——R)_ w R()—-R

= (2.1.5)
e (R) i+ w €
and from (2.1.3):
=T (2.1.6)
w+ épL

Thus there are two types of equilibria for Model 1:

El1 : Resources only - (Rp,0,0)
E2 : Resources, lysogens and temperate phages - (R, L,T)

2.1.2 Feasibility and stability of the equilibria

Equilibrium E1 (ie. R = RU,I: =07 = 0) corresponds to extinction of the
lysogen and phage populations. The equilibrium is clearly feasible hecause Ry is a

positive constant. The Jacobian matrix at this point is

~w  —ey(Ro) 0
J(E1) = 0 yr(Ry)—-i—-w O
0 t,BT —Ww
with eigenvalues —w (repeated) and "1 (Rp) —i~w. Since w is always positive, it follows

that the equilibrium will be stable provided that ¥ (Ro) < ¢ + w, i.e. the growth rate
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of the lysogens is less than the rate at which they are lost owing to induction and
heing washed out of the system. If this is the case then the lysogen population cannot
survive, and if there are no lysogens then the phage population will also be eliminated.

Now we turn to Equilibrivin E2. From (2.1.5), this equilibrium is feasible if and

only if

Ry >R <= 1 (Ry) > vL(R) (2.1.7)

(since 1Py, is monotonic increasing). Using (2.1.4), we can rewrite this feasibility condi-
tion as ¥ (Ry) > i+ w.

The Jacobian for E2 is

we (ML —eitw) 0
J(E2) = YL (R)L 0 0
0 ifr — 6rT -orL —w

We can read off one of the eigenvalues as —drL — w, which is negative provided that
E2 is feasible. Now consider the top left 2x2 submatrix of J(E2). The remaining two
eigenvalues will have uegative real parts provided that the submatrix has a positive
determinant and negative trace, and this is the cose provided that L > 0. Thus, if E2
is feasible then it nust also be stable.

Figure 2.1 provides an example dynamical simulation of both types of equilibria
for Model 1. This simulation was obtained by choosing a set of I;a.rameter values and
the initial sizes of the phage and lysogen populations, and then numerically integrating
the model differential equations in order to determine how the population sizes vary
over time. The simulations for the other models in this chapter were carried out using
the same procedure. In this example, we have 1 (Rg) = rRy/(Ro + k) = 0.67 (to 2
d.p.). The above theory shows that equilibria of type E1 are feasible and stable when
i+w > ¥ (Ry), and equilibria of type E2 are feasible and stable when i +w < ¥1(Rp).
In Figure 2.1(A) we have i + w = 0.9 > ¢ (Rp), and the equilibria is of type E1; in
Figure 2.1(B) we have i +w = 0.3 < 91,(Ry) and the equilibria is of type E2. Thus the

simulations are in agreement with the theory.

2.2 Model 2. Temperate phage, lysogens, and sensitive
cells

This model includes a population of sensitive bacteria (.5), and the segregation rate

for lysogens is strictly positive,
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Figure 2.1: Numerical simulations for Model 1 (R=resources, L=lysogens,

T=temperate phages). Two equilibrium types are shown:(A) Resources (R) only; (B)
Resources, lysogens (L) and temperate phages (T'). In (A) the parameter settings are
i =04 and w = 0.5, while in (B) i = 0.1 and w = 0.2. The remaining parameter
values (same for (A) and (B)) are: Ry = 100, e =5 x 1077, r = 0.7, k = 4, Br = 100,
o = 10_9, ng=0,£6£=0
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dR

- = @ - R) e (R)(L+ (1~ ag)S) (2.2.1)
% = Vr(R)L+pérST - (w+i+ &)L (2.2.2)
(j; = (1 -ag)pL(I)S ST +EL - wS (2.2.3)
(7]117 = Brl+ Br(l = p)orST —opLT - T (2.2.4)

The Jacobian matrix for this model is:

-w — ey (R)L —e(R) —eyr(R)(1 - ag) 0
—ep (R)(1 — as)S
Vi (R)L VL(R) — i porT pérS
—w— €
J = .
(1 - as)¥(R)S € (1 - as)vL(R) —-orS
—5TT -~ W
0 idr — orT /37‘(1 - ]))(STT Br{l — p)orS
—(5’1'L - W

2.2.1 Deriving and interpreting the equilibria

Model 2 contains the four species R, S, L, and T, and so there are 2* potential
types of equilibria. However, we will show that many of these potential equilibria are
not feasible, irrespective of the parameter values. Other equilibria will turn out to be
feasible provided that the parameter values satisfy certain conditions.

First we set Equations (2.2.1) - (2.2.4) equal to zero. If we multiply the right hand

side of (2.2.3) by p, and add the result to the right hand side of (2.2.2), we obtain

YL(R)L — (w+ i+ &L +p(1 = ag)yp(R)S + ptl — pwS =0 (2.2.5)

It is convenient to consider the cases L = 0 and L > 0 separately; we begin by
looking for equilibria with L = 0. In this case, we find from (2.2.5) that cither § = 0
orw=(1-ag)y(R). If § =0, then R = Ry (from (2.2.1)) and T = 0 (from (2.2.4)).
On the other hand if w = (1 — s (R), then

N e
R = ——= (2.2.6)

(1 -ag)r—w
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and we find that

S = (R() - f?)/(
(from (2.2.1)) and T = 0 (from (2.2.3)).

Now we will look for equilibria with L > 0. In this case we can use the substitution
S = rL to write Equation (2.2.5) as follows:

L (1#911(1}) — W+ i+E+p(l - ag)yp(R)x + pt - pw.r) =0

(2.2.8)
Since we are assuming that L is non-zero, the expression inside the large brackets in

the above expression must be equal to zero. This tells us that

S R —w—i—(1-
b= = WL( ) W ( ‘p)E, (229)
L p(w-(1-aspu(®)
and therefore
A w+i+ (1—p)+ pwid
s (R) = - 2.2.10
VL(R) T+ p(l=as) ( )
which imiplies that ¢ is a monotone function of & and lies between
P = — (2.2.11)
1—ag
and
Yy =w+i+ (1 -p) (2.2.12)
From (2.2.2) we find

and so

sy 8T = (wHit+&— U)l,(R))LV
p

(2.2.13)

7= u.)+i+§—l/)1‘(R)
pir

(2.2.14)
21



From (2.2.4), we have

L =wl/(iBy + 6p[28r(0 = p) — 1]T) (2.2.15)
and clearly
S=3L, and R = k'u?vL/(r‘ - 1.1) (2.2.16)

So for a given value of ¥, there is a corresponding unique equilibrium. Using (2.2.1),
the following relationship between the parameter Ry and the equilibrium values can be

obtained:

Ry = R+ (e¥r/w)[L + (1 + ag) 5] (2.2.17)

Thus there are three possible types of equilibria:

E1l : Resources only - (Ry.0,0,0)
E2 : Resources and sensitive cells - (R.S.0,0)

E3 : Resources and all three populations - (ﬁ, S, L, 1)

2.2.2 Feasibility and stability of the equilibria

The equilibrium E1 (i.e. (R9,0,0.0)) is clearly feasible (since Ry is always positive).

To establish its stability we can examine the Jacobian at E1:

“w —e(Re)  —evr(Ro)(1-as) 0

o0 gnR) —i—w—t 0 0

TED =1 ¢ (1 - os)pu(Ro) —w O
0 iBr 0 —w

The eigenvalues of J(E1) are: (1—ag)¥L(Rg)—w; ¥, (Ro)—i—w—§; and —w (repeated).

So El is stable provided that the following conditions are satisfied:

vL(Re) < (T-—‘iﬂ—c,)' (2.2.18)

YL(Ry) < i+wHE (2.2.19)
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Clearly if (1 —as) > 1, and (2.2.18) is satisfied, then (2.2.19) will also be satisfied. The
analysis of the E2 equilibrium will reveal that (2.2.18) is equivalent to Ry < R(E2).
Now we consider equilibriuimn E2 (i.e. (fi, 5,0,0)). From (2.2.6) and (2.2.7), we see

that E2 is feasible provided that

w < (1 —ag)r (2.2.20)
(1-ag)r .
o 2221

Y S 1T FR (2.2.21)

Clearly if the second of these conditions holds. then the first condition will also hold.
Note that the second condition is equivalent to (Rg > R).
The Jacobian matrix for E2 (in the order (R, S,L,T)) is as follows:

ey (R)(1 — as)S —ey(R)(1 — ag) —epr(R) 0
—W
(1 -as)¥(R)S  (1-as)¥u(R) 3 ~6r8
—W
J(E2) = 0 0 B =i prs
__w —
0 0 iBr 3r(1 - p)érS
—~w

The expressions for the eigenvalues of the J(E2) are rather long and complicated,
but we can proceed by splitting the matrix into two parts: intrinsic (R and S) and

extrinsic (L and T'). The intrinsic Jacobian is

~ey) (R)(1 —ag)S —eyr(R)(1 - ag)

—-w

TED =1 (oS (- as)vr(R)

—w

with eigenvalues

—w (2.2.22)

and
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—w 4 (1 —as)yL(R) — et} (R)(1 — as)S. (2.2.23)

If these eigenvalues are both negative, then the equilibrium is intrinsically stable.
23 1 Y

The extrinsic Jacobian is

P (R) —1 popS

E(E2) = .

(E2) o PFr(l - p)orsS
—Ww

with trace given by

Tr(E(E2)) = Yr(R) —2w—i—£+ Ar(l—p)rS. (2.2.24)

If the trace is positive then there must be at least one eigenvalue with a positive
real part, which means that the equilibrium is extrinsically unstable and the phages
and lysogens can invade. Even if the trace is negative the equilibrium will still be

extrinsically unstable if the determinant, given by

Det(E(E2) = ArorS (¢o(R) —w—i - €~ pyr(R) + pw + pe)
+w (w +i4+E— w,,(f{)) ;

is negative.

For E3, we are not able to obtain simple feasibility and stability criteria.

Figure 2.2 illustrates the three types of equilibria for Model 2. In these examples
we have i1 (Rg) = rRy/(Ry + k) = 0.67 (to 2 d.p.). For the equilibrium of type El
(Figure 2.2(A)) we have w/(1 — ag) = 0.78 and 7 + w + £ = 0.90, so that the stability
conditions (i.e. (2.2.18) and (2.2.18)) are satisfied.

For the E2 equilibrium (Figure 2.2(B)), the parameter values are such that w = 0.65,
(1 —ag)r =071, and (1 — ag)r/(1 + k/Ry) = 0.69, and so the feasibility conditions
(1.e. (2.2.20) and (2.2.21)) are satisfied. The eigenvalues of the intrinsic Jacobian (ob-
tained by evaluating (2.2.22) and (2.2.23)) are both negative, which means that the
cquilibrium is intrinsically stable. Furthermore, by evaluating (2.2.24) we find that the
extrinsic Jacobian has a negative trace and a positive determinant, which means that
the real parts of the eigeuvalues of this matrix must be negative. Thus, the lysogens

and phages are unable to invade the equilibrium of resources and sensitive bacteria,
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By varying the parameter values (in particular by lowering the value of w to 0.2),
we are also able to obtain a stable equilibrium with all populations present. as shown

in Figure 2.2(C)

2.3 Model 3. Temperate phage, lysogens, sensitive, and
resistant bacteria

The above model may be extended to include a population of resistant bacteria (B)
which are immune to phage infection, and whose selection coeflicient is ap. Here, the

rates of change of the populations are given by:

dR

- = w(Roy—R)—- ey (R)Y(L+(1-ag)S+(1—-ap)B) (2.3.1)
%]1: = Y (R)L + pépST — (w+i+ &)L (2.3.2)
% = (1= as)L(R)S — 6pST + £L ~ wS (2.3.3)
iB

= (1-ap)L(R)B-wB (2.3.4)
dt

-(% = if#rL + 6r(1 — p)6rST — 67LT — T (2.3.5)

The Jacobian for this model is:

w - o (R)L ‘ ~ehp(RY - epp(RY(1 — ovg) - e (R)(1 — apg) 0
—ep) (R)(1 - org)S
et (R)(1 ~ ap) B
U (R)L bL(R) — i porT 0 sirS
—w— £
J — (1 - as)u’)’L(R)S £ (1 —as)vL(R) 0 —-orS8
' —orT —w
(1 - ap)yi (R)B 0 0 (1-ap)L(R) 0
—w
0 iy Br(1 = p)opT 0 Ar(l = p)orS
\ —orT —brl —w

2.3.1 Deriving and interpreting the equilibria

This model is very similar to the previous one. In fact, Equations (2.2.2), (2.2.3),
and (2.2.4) are identical to (2.3.2), (2.3.3), and (2.3.5). By setting (2.3.4) equal to zero,

we see that either B = 0 or
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Figure 2.2: Numerical simulations for Model 2 (R=resources, L=lysogens, S=sensitive
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only (w = 0.8, Br = 100, é7 = 107%); (B) Resources and sensitive bacteria (w = 0.65,
Br = 50, 87 = 10710); (C) Resources, sensitive bacteria, lysogens and temperate phages
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Yr(R) =w/(1 —ap) (2.3.6)

at equilibrium. If 3 = 0, then (2.2.1) and (2.3.1) are identical; in this case, there are
three potential equilibria as described in Section 2.2.1.
To identify the remaining equilibria for Model 3 we assume that (2.3.6) holds, and

therefore

po__ Wk (2.3.7)
r(l —ap) ~w
As we did in Model 2, we multiply the right hand side of Equation (2.3.3) by p, and

add the result to the right hand side of (2.3.2), and we obtain

Y (R)VL — (w+i+ &)L+ p(1 - as)Y(R)S + pEL — pwS =0 (2.3.8)

(which is identical to (2.2.5)). As before, we will consider the cases L = 0 and L > 0
separately.

IfL = 0, then (2.3.8) implies that either S=0o0rw= (1- (ys)y)L(ﬁ). If$=0,it
follows that B = w(Ry — R)/[eyr(R)(1 — ap)] (from (2.3.1)) and T = 0 (from (2.3.5)).
On the other hand, if w = (1 — ag)wL(R) then using (2.3.6) we must have ag = ap -
but this contradicts our assumption that sensitive cells grow faster than resistant cells,
and so this particular type of equilibrium can be discounted.

Now we look for equilibria with Z > 0. The expression for S/L for Model 3 is the

same as in Model 2, i.e. Equation (2.2.9). Using (2.3.6), we can now write S /L as

LA.' _ w—(l —_C)‘B)(w+i+(1 _p)g) (239)

~

L wp(ag — ag)

The expressions for T, L, § are the same as in Model 2, i.c. Equatious (2.2.14), (2.2.15),
and (2.2.16) (remember that in these equations, & is used to denote S / f) Finally, by

substituting (2.3.7) into (2.3.1) (set equal to zero) and rearranging, we obtain:

> (Ro— R)(1—ap) — el —€(1 - ag)$
B =
6(1 -—(XB)

(2.3.10)

The list of possible equilibrium types is as follows:
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El : Resources only - (Ry,0,0,0,0)

E2 : Resources and resistant cells - (fi,(),O,(), B )

E3 : Resources and sensitive cells - (fi, S ,0,0,0)

E4 : Resources, sensitive cells, lysogens and temperate phages - (R, S, LT, 0)

E5 : Resources and all four populations - (f{, S, [:, T, B )

2.3.2 Feasibility and stability of the equilibria

E1l is clearly feasible. The Jacobian at this equilibrium is:

- ~eh (Ro) —eYr(Ro)(1 —as)  —ey (Ro)(1—ap) 0
0 L(Ry) - i-w- £ 0 0 0
JE) =] 0 3 (1 - ag)wL(Ro) ~w 0 0
0 0 0 (1-ap)yr(Ry)—w 0
0 107 0 0 -
The eigenvalues of J(E1) are:
(1 - as)yrL(Ro) - w (23.11)
(1 — ap)yr(Ro) — w (2.3.12)
Yi(Ro) ~w—i—¢ (2.3.13)
-w  {twice) (2.3.14)

Thus, E1 will be stable provided that (i) the growth rates of both the sensitive and
resistant bacteria ((1 — ag)¥,(Ro) and (1 — ap)¥,(Ry) respectively) are lower than
the flow rate, and (ii) the growth rate of the lysogens (vr,(Rg)) is lower than their rate
of loss owing to induction. loss of prophage, and flowing out.

E2 is feasible provided that the following conditions are satisfied:

r>w/(1 - oap) (2.3.15)
Ro> R (2.3.16)

Note that these are similar to the feasibility conditions for equilibrium E2 ol model 2.
The Jacobian matrix for E2, in the order (R, B, S,L,T), is:
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—et) (R)(1 —ap)B  —eyp (R)(1 — ap) —epr(R)(1 —as) —evr(R) 0

—Ww
(1- (1'13)1/)2(1?)3 (1- (1'3)15![4(&) 0 0 0
-
JEY) = 0 0 (1 - as)¥r(R) 3 0
—w
0 0 0 Yr(R)—i 0
e —
0 0 0 7'}3'1‘ -

The eigenvalues of J(E2) are as follows:

U)L( R)(1 - ag) - (2.3.17)

LR)~w—i-¢ (2.3.18)
(W(R) — ey (RVBY(1 = ap) — w (2.3.19)
-w (twice) (2.3.20)

and these must all be negative for the equilibrium E2 to be stable. From the first
cigenvalue we see that the growth rate of sensitive cells must be lower than the flow
rate, while the second eigenvalue shows that the growth rate of lysogens must be lower
than the sum of the flow, induction and segregation rates.

The E3 equilibrium is feasible provided that the following conditions are satisfied:

r(l-ag)>w (2.3.21)
Ro> R (2.3.22)

The Jacobian for E3, in the order (R, S, B, L,T), is:
J(E3) =
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asey (R)S = (R)(1 - ag) —eyr(R)(1—ap) —evr(R) 0
- (R)S
-
w’[(R)S ) (1 - ag)vr(R) 0 3 —678
—agyp (R)S —w
0 0 (1 - ap)yL(R) 0 0
—W
0 0 0 YL(R) —i péyS
R 5
0 0 0 i Br(1— p)arS
—-Ww

To examine the stability of E3, we can look at the intrinsic (R, S) and extrinsic
(B. L, T) sub-matrices of J(E3). The intrinsic Jacobian (i.e. the intersection of the 1st

and 2nd rows and columns of J(E3)) has the following eigenvalues:

—w (2.3.23)
—w — e} (R)S(1 — ag) + ¥L(R)(1 - ag) (2.3.24)

and these must both be negative for the equilibrium to be intrinsically stable.

The extrinsic Jacobian is as follows:

(1 - ap)yrL(R) 0 0
Cw
0 $r(R) - porS
0 i UT(I - p)(S]S
—w

The first eigenvalue is clearly (1—ap)y'r(R)—w, and if this is positive then the resistant
bacteria will be able to invade. To determine whether one or both of the other two

eigenvalues have positive real parts, we can examine further sub-matrix
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(i.e. the intersection of the second and third rows and columns of E(E2)). Since

this matrix is the same as the extrinsic Jacobian of Section 2.2.2 (Model 2, E2), the

conditions for determining whether there is an eigenvalue with a positive real part are

the same as in the earlier case.

At an E4 type equilibrium of resources, sensitive bacteria, temperate phages, and

lysogens, the Jacobian matrix (in the order R, S, L, T, B) is given by:

J(E4) =

\

A

cw - e (R)L

—egh (R)(1 - ag)S

(1 —as)yi(

"(R)L

R

)$

—epp (R)(1 ~ o)

(1 - ag)¥r(R)

T - w
porT

Br(1—p) 5T

~-~€‘1/)L(I}) 0 - E’JJL(R)(l o (_YB) \
3 ~678 0
W (R) —i porS 0
—w—¢&
iy — JTT Br(l - ]))5’[‘5‘ 0
—(5TL — W
0 0 (1 - ap)vL(R)

—Ww

The intrinsic section of this Jacobian is the same as the full Jacobian for Model 2

(although the order of the variables is different). The extrinsic section of J(E4) is the

single eleient

(1 -ap)vL(R) —w. (2.3.25)

If this quantity is positive, then the resistant bacteria will be able to invade.

An E5 equilibrium includes resources and all four populations. Notice that (2.3.2), (2.3.3),

and (2.3.5) are identical to (2.2.2), (2.2.3), and (2.2.4) respectively, and this means that

some of the results already obtained for Model 2 (E3) will be useful in analysing the

present case.
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Suppose we begin with an equilibrium (R, L, 5,7’) with no resistant cells present
initially, and then introduce a small number of resistant cells. As usual, we assume

ag < «p. For the resistant cells to invade, we must have (from (2.3.25)):

as < ap <1—w/pL (2.3.26)

which hplies that

w< (1—ap)hy < (1 - ag)y (2.3.27)

where %, is the lysogenic growth rate at the equilibrium involving no resistant cells.
Now we will investigate the feasibility of E5. Following Stewart and Levin (1984), let

(R,L.S5.T,0) be an equilibrium with no resistant cells present, and let (R,L,8,T,B)

be an equilibrium involving all four populations. For the right hand side of (2.3.4) to

be equal to zero we must have (since B # 0)

P = kw

1-apg)r-w

and

W

VL(R) =y = s

Using (2.3.27), together with (2.2.11) and (2.2.12), we see that 1,7,rL is bounded as follows:

w = I v
Ym = <YL <Y <Yp =w+i+ (1 - p)
1—-ag

For a given value of '¢7L, we know from the analysis of Model 2 (E3) that there are
unique values of L, S, and T which satisfy the identical sets of equations (2.2.2), (2.2.3), (2.2.4)
and (2.3.2), (2.3.3), (2.3.5). We also know that these values are feasible, i.e. positive.

Now all we need to do is show that the value of B3 is feasible as well.

From (2.2.17), we know that

Ry =R+ (cbr/p)(L + (1 - as)S)

and we now let

Ro=R+ (‘»@7’14/%')(1:4 + (1 - ag)9).

Then from (2.3.4) we have
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A W(Ro — R) — ev (R)(L + (1 — ag)S)

_ 2L (2.3.28)
_ wéf’i;f)o) (2.3.29)
o (2.3.30)

The last step follows because we assume that VL < UT’L implies Ry < Ro.

We are not able to derive straightforward stability conditions for E3.

Figure 2.3 illustrates the five types of equilibria. For the El simulation (Fig-
ure 2.3(A)), the high flow rate (w = 0.8) ensures that the growth rates of the sensitive
cells and resistant cells are lower than the rates at which they are washed out of the
system. The flow rate is also high enough to ensure that the growth rate of the lysogens
is lower than the total rate at which lysogens are lost (via induction, segregation, and
washing out). Thus, the El stability conditions (obtained by requiring the eigenvalue
expressions (2.3.11)-(2.3.13) to be negative) are satisfied. To check the feasibility of E1
we siinply observe that R= Ry =100 > 0.

In Figure 2.3(B), the high adsorption rate of temperate phages to sensitive cells
(dp = 1075) means that the population of sensitive cells cannot survive, and this in
turn leads to the extiuction of the lysogens and temperate phages. Thus, a stable
equilibrium of resources and resistant cells is established. Note that the E2 stability
conditions, obtained by requiring the eigenvalues in (2.3.17)-(2.3.20) to be negative,
are all satisfied. The E2 feasibility conditions given by (2.3.15) and (2.3.16) are also
satisfied.

In Figure 2.3(C)), resistant cells have a very significant growth disadvantage (op =
0.5) compared to lysogens and sensitive cells, and so the resistant population dies out
very quickly. The low adsorption rate and burst size (67 = 107" and 8 = 10) mean
that the temperate phage and lysogen populations cannot be sustained, and a stable
equilibriuin of resources and sensitive cells is established. Note that the feasibility con-
ditions ((2.3.21) and (2.3.22)) are satisfied. The intrinsic stability conditions (obtained
by requiring the eigenvalues (2.3.23) and (2.3.24) to be negative) and the extrinsic
stability conditions (which are the same as the extrinsic stability conditions given in
Section 2.2.2 for Model 2, E2) are also satisfied.

An E4 type cquilibrium is shown in Figure 2.3(D). Here, the growth disadvantage
of resistant cells leads to their extinction, and a stable equilibrium of resources and
the other three populations is reached. We do not have straightforward feasibility and
intrinsic stability conditions for E4, but we observe that the condition for extrinsic

stability condition (obtained by requiring (2.3.25) to be negative) is satisfied.
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Figure 2.3(E) shows a stable equilibrium with all populations present. We do not
have feasibility and stability conditions for E5. The only difference in parameter values
between E4 and E5 is that the growth disadvantage of the resistant cells is lower
for E5 than it was for E4, so that the E4 extrinsic stability condition (obtained by
requiring (2.3.25) to be negative) is no longer satistied. Thus, we can regard this E5
equilibriun as the result of a successful invasion by resistant bacteria of the above Ed

equilibrium.

2.4 Model 4. Lysogens and sensitive bacteria with viru-
lent and temperate phage

Another variation of the model consists of lysogens, sensitive bacteria, and virulent
and temperate phage. Virulent phage can grow on both lysogens and sensitive cells,

and the adsorption rate dy is the same for both types of cell. The model is given by

dr

W = w(Rg—-R) - 6[’¢’L(R)L +(1- (lrs)’l,L')L(R)S] (241)
dL S .

S = CLR)L+porST =LV — (w +i+€)L (2.4.2)
%’. = Ys(R)S — 67ST — Sy SV + €L — wS (2.4.3)
%?_ — L+ Or(1 - p)6pST — §7LT — T (2.4.4)
at

v o

= = Byvdy (S + L)WV —wV (2.4.5)
at

where 8y is the burst size for the virulent phage. The Jacobian for this model is:

J =
~w — ey (R)L ~epr(R) =€ (R)(1 — ug) 0 0
~(1 - as)edy (R)S
d’},(R)L d’L(R) - 5VV p(STT p&TS __5VL
—i-w—§
(1- as) (R)S 3 (1 - as)¥L(R) ~678 — 86y
0T - 6V —w
~0rL —w
0 V"ﬂ‘/ (SV ‘/,BV(SV 0 ﬂv(sv (S + L)
~w
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Figure 2.3: Numerical simulations for Model 3 (R=resources, L=lysogens, S=sensitive
bacteria, B=resistant bacteria, T=temperate phages). Five equilibrium types are
shown:(A) Resources only (w = 0.8); (B) Resources and resistant bacteria (&7 = 107%);
(C) Resources and sensitive bacteria (ap = 0.5, 8r = 10, §r = 107'!). (D) Resources,
sensitive cells, temperate phages and their lysogens (ap = 0.5) (E) Resources and all
four populations (ap = 0.32). Except where otherwise indicated, the parameter values
are: Ry = 100, e =5x1077,7r = 0.7, k = 4, fr = 100, 67 = 1079, as = =0.02, ap = 0,
£ =0.0001, i=0.1, w = 0.2
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2.4.1 Deriving and interpreting the equilibria

By setting (2.4.5) equal to zero, we see that cither V =0orw= v (S + L)
If V = 0, then the model reduces to Model 2, in which case there are three possible
equilibria as described in Section 2.2. Now suppose that V > 0. As the equations for
this model are somewhat intractable, we can begin by looking for equilibria in which
one or more of the species populations (apart from V) are absent.

We can rule out the possibility of any equilibria existing with zero resources by
setting (2.4.1) equal to zero and substituting R=0 and 1,«')1‘(1?) = (). This leaves us
with the condition wly = 0, which cannot be satisticd. Thus we can assuimne that Ris
strictly positive for all equilibria in this model.

We can also rule out the existence of equilibria with lysogens present but no tem-
perate phages. Setting 2.4.4 equal to zero and substituting 7" = 0, we are left with the
condition i,(iTI: = 0, which is false when L is positive.

There are also no equilibria with V > 0 and § = 0. Equation (2.4.3) tells us that
[ = 0, but if V" is non-zero and both § and L are zero then there is no way that the right
hand side of (2.4.5) can be zero. Therefore we can discount this type of equilibrium.

Now we look for an equilibrium with V >0and L =0. Since V is non-zero, we
know from (2.4.5) that

S = w/(Bvév). (2.4.6)

Thus. setting Equation (2.4.3) equal to zero, we obtain

W ~ ~ “
/"'_3"5‘ ((1 - (YS)’(/VL(,R) - (57'_’[* - (Sv V — w) = 0, (247)
a]ld S0 we must hﬂ‘V(‘,
(1 - ag)pr(R) ~ 67T — vV —w =0. (2.4.8)

Since L is zero and S is non-zero, Equation (2.4.2) tells us that T = 0, and so the above

expression becomes

(1-as)yL(R) - 6yV —w=0 (2.4.9)

and so

[

(1 - as)yr(R) —w

<)
it

(2.4.10)
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By substituting § = w/(Bydy) into (2.4.1) (set equal to zero) and re-arranging, we

obtain

oo (Ro— R)Byv oy
Yr(R) = —((m)—' (2.4.11)

which can be solved to find the value of R. Note that the above equilibrium is also

obtained if we search for an equilibrium with V > 0 and 7' = 0.
The final potential equilibrium has all populations present, although we are not
able to derive expressions for the population densities at such an equilibrium.

The full list of equilibrium types for this model is:

E1l : Resources only -(f7,0,0,0,0)

E2 : Resources and sensitive cells -(R, $,0,0,0)

E3 : Resources, sensitive cells and virulent phages -(R. S, 0,0, V)

E4 : Resources, sensitive cells and both phage populations —(R, S, L, T, 0)

E5 : Resources and all four populations -(R,.é‘ , i,’f“, V)

2.4.2 Feasibility and stability of the equilibria

The equilibrium E1 is feasible. The Jacobian at this point is:

—w —eyr(Ro) ~evr(Rg)(1—as) 0 0
0 U)L(Ro)——i-—w—f 0 0 0
J(E1) = 0 3 (I-as)yrL(Ro)-w 0 0
0 idr 0 -w 0
0 0 0 0 -w

The eigenvalues of J(E1) are:

—w  (three-fold) (2.4.12)
(1 - asy¥r(Ro) - w (2.4.13)
vi(Ro) —w ~ i ~ €. (2.4.14)

It follows that E1 will be stable provided that (i) the growth rate of the sensitive
cells is less than the flow rate, and (ii) the growth rate of the lysogens is less than the

rate at which they are lost owing to induction, segregation and flowing out.
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For E2, the {easibility conditions are:

r(l-ag)>w (2.4.15)
Ry > R. (2.4.16)

Note that these are the same as the feasibility conditions for Model 2. E2. The Jacobian
for E2, in the order (R.S,V, L, T), is:

J(E2) =
(»YS‘W/'IL({?)? —edL(R)(1 — as) 0 ~epr(R) 0
~ey) (R)S
-/
(R —ag)S YRl —as) —6v§ ¢ —678
—w
0 0 By by S 0 0
—w
0 0 0 YL(R) porS
—w—i—§
0 0 0 i3r Br(1 - p)érS
—Ww

/

The intrinsic section of the Jacobian (i.e. the 2 x 2 matrix at the top left corner of

J(E?2)) has the following eigenvalues:

—w (2.4.17)
(1 - as)(¥L(R) — ey (R)S) —w (2.4.18)

Note that these are the same as the eigenvalues of the intrinsic Jacobian of Model 2,
E2. If these cigenvalues are negative, then the system is intrinsically stable.

The first cigenvalue of the (3 x 3) extrinsic section of the Jacobian is By S — w.
If this is positive, then the virulent phages will be able to invade. To check whether
the lysogens and temperate phages can invade, we must determine whether or not the
9 x 2 matrix at the bottom right corner of J(£2) has an eigenvalue with a positive real
part; in fact, this matrix is the same as the extrinsic matrices of sections (1.2.2) and

(1.3.3). with trace and determinant given by (2.2.24) and 2.2.25 respectively. If the
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determinant is negative, then there will be one eigenvalue with a positive real part; if
the determinant and the trace are both positive then hoth eigenvalues will have positive
real parts.

For E3, the value of S given by (2.4.6) is always feasible. From (2.4.10) we see that

V will be feasible provided that

(1 - as)yrL(R) > w (2.4.19)

From (2.4.10). we must also have R > Ry in order for E3 to be feasible.
The Jacobian for E3, in the order (R, S,V, L, T), is:

J(E3) =
asey (RS —epr(R)(1 - ag) 0 —ep(R) 0
“‘(’(/”L(R)AS'

-

(1- sl (RS (1 -as)(R) -6y 8 3 ~op8

——(va - w
0 V By 8y BydyS —w V By by 0
0 0 0 i (R) - 6V pé7S
—w—i—¢
0 0 0 iBr Br(1 - p)érS
-

The intrinsic section of J(E3) is the 3 x 3 matrix at the top left corner; the system
will be intrinsically stable if this matrix has no eigenvalue with a positive real part
(one of these eigenvalues is -w; the expressions for the other two eigenvalues are rather
complicated). The 2 x 2 extrinsic section of the Jacobian (bottom right corner) has

trace

wi(R) — 6y V — 2w — i — €+ (1 - p)orS.

If the trace is positive then there must be at least one eigenvalue with a positive real

part, which means that the system is extrinsically unstable and the phages and lysogens
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can invade. Even if the trace is negative the systemn will still be extrinsically unstable

if the determinant, given by

/ﬁMSQuub—w~i—§—muah+mmmg—®Va-m)
+w (w +i+&—PL(R) + 5\/‘7) :
is negative.
For E4, we know from the analysis of Model 2 that for realistic parameter values

there will be a unique feasible equilibrium. The Jacobian for this model, in the order
(R,L,S,T,V), is:

J(E4) =
agePy ({%).? —-GUBL(R) “f"/)L([?)(l — ag) 0 0
—€yy, (R)?
~eyy (R)L
—w
W (R)L Pr(R) pérT oS —ovL
S
¢, ()1 — ag)$ 3 YL(R)(1 - as) ~6r8 —6v8
87T — w
0 ibr — 6T Br(1 - p)érT  Br(1 - p)érS 0
—b6rL —w
0 0 0 0 Bvév(S+ L)
—Ww

The (4 x 4) intrinsic section of the Jacobian is identical to the full Jacobian of
Model 2 (Section 2.2.2); the equilbrium will be intrinsically stable if this matrix has
no eigenvalues with positive real parts (note that in Section 2.2.2 we were unable to
obtain straightforward expressions for these eigenvalues). The extrinsic section of the

Jacobian is the single element

Bvov (S + L) - w. (2.4.20)
If this quantity is positive, then the virulent phages will be able to invade.
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For E5. we are not able to derive straightforward feasibility or stability conditions.

Figure 2.1 shows examples of the five equilibrium types. In Figure 2.4(A). an equi-
librium of type E1 is shown. The high flow rate (w = 0.8) ensures that the populations
of lysogens, sensitive cells, and phages are all washed out of the system at a faster rate
than they can grow. This equilibrium is feasible since R= Ro > 0. The eigenvalues of
the Jacobian matrix (given by (2.4.12)-(2.4.14)) are all negative, so the equilibrium is
stable.

In Figure 2.4(B), an equilibrium of type E2 is shown. Here, the flow rate is lower
than for E1 (w = 0.2) and the growth rate of sensitive cells is high enough for this
population to survive (ag = —0.1). The feasibility conditions (2.4.15) and (2.4.16)
are satisfied. The eigenvalues of the intrinsic Jacobian (given by (2.4.17) and (2.4.18)
are both negative, so the equilibrium is intrinsically stable. The extrinsic stability
conditions, as described in Section 2.4.2, are also satisfied.

In Figure 2.4(C), an equilibrium of type E3 is shown. Here, the higher burst size
(B = 150) and adsorption rate (& = 2 x 107!') of the virulent phages enables
them to coexist with the sensitive bacteria. The feasibility condition 2.4.19 is satisfied.
The intrinsic and extrinsice stability conditions, as described in Section 2.4.2, are also
satisfied.

In Figure 2.4(D), an equilibrium of type E4 is shown. The faster adsorption rate of
temperate phages compared to virulent phages leads to the extinction of the virulent
phage population. We do not have straightforward feasibility and intrinsic stability
conditions for this equilibrium. The condition for extrinsic stability (obtained by re-
quiring (2.4.20) to be negative) is satisfied.

In Figure 2.4(E), an equilibrium of type E5 is shown, with all four populations coex-

isting. We did not obtain feasibility or stability conditions for this type of equilibrium.
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2.5 Model 5. The Full Model

This model includes sensitive and resistant bacteria, virulent phages, and temperate
phages and their lysogens. The full model equations are given by (2.0.1)-(2.0.6). The
Jacobian for Model 5 (in the order R, L, S, T. V, B) is:

J =
— e (R)L —c¢(R) —edL(R) 0 0 —er(R)
—eY (R)S +agey(R) +apey(R)
+aged) (R)S
—ey) (R)B
+apey) (R)B
—w
P (R)L Yr(R) — ovV porT porS —by L 0
¥ (R)S £ YL(R) —0r8 -6y S 0
—asvl,(R)S —asti(R)
—o7T — oV
—w
0 ’Il,d']' - 6’1‘7‘ ﬁ’]‘d’]‘T /3’1(515 0 0
=pBrérT  —pfirérS
—drL
—w
0 By vV BvovV 0 By oy S 0
Bvéy L
W
Y (R)B 0 0 0 0 Yr(R)
—ap¥,(R)B —apyL(R)
—w

2.5.1 Deriving and interpreting the equilibria

We can rule out the existence of equilibria with R = 0 by setting (2.0.1) equal
to zero and substituting R = 0 and d’[,(f?) = 0. This leaves us with the expression
wRy = 0, which is false. Other potential equilibria in which either B=0orV=0 (or
B = V = 0) have been covered in the analysis of the previous models. Thus we need

only look for equilibria with B>0and V> 0.
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Figure 2.4: Numerical simulations for Model 4 (R=resources, L=lysogens, S=sensitive

bacteria, T=temperate phages, V=virulent phages).
shown:(A) Resources only (§y = 107'2. 8y = 10,67 =
(B) Resources and sensitive bacteria (6y = 107, 3p

—0.1,w = 0.2). (C) Resources, sensitive bacteria and virulent phages (8y = 150, dy

10712 Ry = 50,w
10,67 = 10712 ag

Five equilibrium types are
0.8).

2 x 107, Bp = 10,67 = 1072, ag = —0.1,w = 0.2). (D) Resources, seusitive bacteria,
lysogens and temperate phages (dy = 10711, (E) Resources, sensitive cells, lysogens,
temperate phages and virulent phages (év = 1071), Except where otherwise indi-

cated, the parameter values are: Ry = 100, €

100,67 = 8 x 10719 ag = —0.02,£ = 0.001,i = 0.001
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First suppose that B and ¥ are positive, but S is zero. Then (2.0.3) (set equal
to zero) implies that L = 0. But if § = L = 0 and V > 0, then the right hand side
of (2.0.6) cannot be equal to zero. Therefore, there are no equilibria of this type.

Next we look for equilibria in which all populations apart from L are present.
Setting (2.0.2) equal to zero. we are left with pdrST = 0, which cannot be satisfied if
S and T arc both positive. So we can discount this type of equilibria.

Now we look for equilibria containing all populations apart from 7. In this case,
setting (2.0.5) equal to zero we have if3pL = 0, which is false if L>0.

Suppose now that there is an equilibrium with all populations present apart from
lysogens and temperate phages. Using (2.0.6) (set equal to zero) we find § = w/(Bydv ),
and from (2.0.4) we find ¥ (R) = w/(1 — ap) (from which we can obtain the value of

R). The expression for V is obtained from (2.0.3):

s w ap —Qag
V=—Ho | =22
5 ( T an ) (2.5.1)

and the expression for B is obtained from (2.0.1):

(Ro = R)(1 — ap)Bydy — (1 — ag)we
€(1 — ap)Bfy oy

The remaining possibility is an equilibrium with resources and all five populations

B=

(2.5.2)

present.
The full list of equilibrium types for this model is:

E1 : Resources only - (R,0,0,0.0,0)
E2 : Resources and sensitive cells - (R, S,0,0,0, 0)
E3 : Resources and resistant cells - (R, 0,0,0, B,0)

E4 : Resources, sensitive cells and virulent phages - (R, $,0,0,0, V)

E5 : Resources, sensitive cells, lysogens and temperate phages - (f?, S, L, T,0,0)
E6 : Resources, sensitive cells, resistant cells and virulent phages - (R, $,0,0, B, V)
E7 : Resources and all populations except virulent phages - (f?., S , A,T, B 0)

E8 : Resources and all populations except resistant cells - (R, S VL, 7,0,V )

E9 : Resources and all five populations - (R, S, L.T,B, V)

2.5.2 Feasibility and stability of the equilibria

The equilibrium E1 is feasible because Ry is always positive. The Jacobian for E1,
in the order (R, S, B, V,L.T), is:
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J(E1) =

~w  —ePr(Ro)(1 - ag) —ep(Ro)(1—ap) O —epr(Ro)

0 (1-ag)yL(Ry)—w 0 0 €

0 0 (I —ap)yL(Ry) ~w 0 0

0 0 0 —w 0

0 0 0 0 wp(Ro)—w—i-¢
0 0 0 0 167

with eigenvalues

(1= ag)¥r(Ry) —w
(1 — (‘KB)I/)L(RO) - W
YL(Ro) —w—i—¢

—w (repeated twice)

and these must all be negative for E1 to be stable.

E2 is feasible provided that the following conditions are satisfied:

(1 —ag)r—w>0
Ry — R(E2) > 0.

The Jacobian for E2, in the order (R, S, B, V.L,T), is:
J(E2) =

0\

0

(2.5.7)
(2.5.8)



~

~ (RS —evr(R)N(1-as) —eypr(R)(1 —ap) 0 —ey(R) 0
+ageal) (R)S
—W
LR = as)S  wL(R)(1 - as) 0 ~6v§ ¢ ~678
—w
0 0 vL(R)(1 - ap) 0 0 0
—Ww
0 0 0 By oy S 0 0
-t
0 0 0 0 ¥L(R) —w pdrS
—i—£
0 0 0 0 iy Br(1 = p)érS
—W
The 2 x 2 intrinsic matrix (top left of J(E2)) has the following eigenvalues:
—w (2.5.9)
(1— ag)yL(R) — e(1 - ag)y),(R) — w (2.5.10)

Of the four eigenvalues of the (4 x 4) extrinsic matrix, we can read off the first two as
(1-a u)'z/),,(f%) —w and fydy S —w. The conditions for one of the other two eigenvalues
to have positive real parts are the same as those given in Section 2.2.2 for the extrinsic
matrix of Model 2, E2.

E3 is [casible provided that the following conditions are satisfied:
(I-—ag)r-—w>0 (2.5.11)

Ry — R(E3) > 0. (2.5.12)

The Jacobian for E3, in the order (R, B,S,V,L,T), is:
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cw— el (R)(1—ap)B —cpr(R)(1 - ap) —ewr(R)(1-as) 0 - (R) 0

¥ (R)(1 - ap)B YL(R)(1 - ap) 0 0 0 0
—w
0 0 vL(R)(1-as) 0O 3 0
iy
0 0 0 —w 0 0
0 0 0 0 wL(R)-w O
—i—¢
0 0 0 0 iy —w

with eigenvalues

(1-as)yL(R) —w (2.5.13)

YL(R) —w—i—¢ (2.5.14)

(1 - op)(@r(R) - e, (R)) — w (2.5.15)
—w (three-fold) (2.5.16)

which must all be negative for E3 to be stable.
For E4, we see that the expression for S, given by (2.4.6), is always feasible. Us-

ing (2.4.10), we also require that
(1 - as)PL(R) ~w- 6V >0 (2.5.17)

for E4 to be feasible. The Jacobian for E4, in the order (R,S,V, B, L,T), is:
J(E4) =
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— (R)S —epL(R)(1 ~ as) 0 v (Y1 —ap)  —n(R) 0
+agey) (R)S
-
YRS (R -as)  —8vS 0 3 ~or8
—agtp (R)S 6V —w
0 Ay oy v vy S 0 vy 1% 0
-
0 0 0 (1 - ag)yL(R) 0 0
- W
0 0 0 0 vr(R) -6y V porS
—w—1i-§
0 0 0 0 i83r Br(1 - p)érS

-/

The intrinsic Jacobian does not have straightforward eigenvalue expression. The
extrinsic matrix is the 3 x 3 matrix at the bottom right of J(E4). We can see that

the first eigenvalue is (1 — ap)¥;(R) — w. One of the other eigenvalues of the extrinsic
matrix will have a positive real part if the quantity

WY (R) = 8yV + Br(1 — p)érS — i — € - 2w

(which is the trace of the 2x2 matrix at the bottom right of J(FE4)) is positive.

We were not able to obtain straightforward feasibility conditions for E5. The Jaco-
bian for E5, in the order (R,S,L.T.B,V), is:
J(E5) =
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ﬂy/L(;}»)i: —pL (R)(1 — ag)  —r(R) 0 —u/JL(R)A 0
—euz’L(R)AS i +agepr(R)
+(.v3(1/;l( ) 5
W
VL(R)(1 - as)§  wu(R)(1 - a) 3 ~678 0 ~ov$
=871 - w
Yr(R)L porT YL(R) —1i pdrS 0 —dv L
—€—w
0 Gr(L = p)orT iy =80T Op(1 — p)6r8 0 0
—57'14 -
0 0 0 0 YL(R) 0
~apr(R)
—w
0 0 0 0 0 By oy S
+ﬂv(5v[:
—w

There are no straightforward expressions for the eigenvalues of the 4 x 4 intrinsic Ja-

cobian. The cigenvalues of the 2 x 2 extrinsic matrix for E5 are:

(1-ap)Pr(R) - w (2.5.18)
Bvoy (S + L) - w. (2.5.19)

If these are both negative, then the equilibrium cannot be invaded by resistant cells or
virulent phages.
For E6, the feasibility condition for Ris
(1= ap)Yr(R) —w >0 (2.5.20)

(from (2.0.4)). The equilibrium density for S is w/(Bydy), which is always positive.
For V to be feasible, we must have (ag — ap)/{ap — 1) > 0; since we are assuming

that as < ap, this condition is equilivalent to

ap <1 (2.5.21)
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Using (2.5.2), the final feasibility condition is:

e (R)(1 - ag)S — w(Rg — R) > 0. (2.5.22)

The Jacobian for E6, in the order (R, S, B,V,L,T), is:

J(EG) =
=~ (R)S  —epr(R)(1 ~as) —evr(R)(1-ap) 0 ~e(R) 0
+(15(‘t,/)2£h’.25
—ep (R)B
+aged; (R)B
iy
“/'IL(R)‘? . V'L(R)(} - as) 0 —(5\/5' £ -—(STS‘
—as¥) (R)S —0V —w
v (R)B 0 YL (R)(1 - ap) 0 0 0
—ngl,‘i’}_(R)B —w
0 ByvoyvV 0 By S Bydy V 0
—!
0 0 0 0 viL(R) — 8,V pérS
—~w—1t=-£
0 0 0 0 i By Br(1 — p)drS
-

The 4 x 4 intrinsic Jacobian does not have straightforward eigenvalue expressions. If
the trace of the 2 x 2 extrinsic matrix (bottom right of J(FE6)) is positive then this
extrinsic matrix will have an eigenvalue whose real part is positive, and so the intrinsic
system can be invaded by lysogens and temperate phages.

We are not able to obtain straightforward feasibility conditions for E7. The Jacobian
for E7, in the order (R.S,B,L,T, V), is:
J(ET) =
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—u/,",‘(lh{)ll —(.1/)1,(fi’,)(l —ag) a('u':,‘(R)(l - ap) —-(1,5'1‘(1%) 0 0
—-('l;";J(R)ASA
-HM“/’; ( )q
'(QL(R)I;A
+aped) (R)B
—w
Wi(R)S  gu(R)(1 - ag) 0 € ~6r$ -6y S
—agyi(R)S —b7T — w
v (RB 0 YL(R)(1 - ap) 0 0 0
—apy (R)B —w
Vi (R)L porT 0 YL(R) - w porS ~by L
0 Ar(1 = p)ord’ 0 iy — orT 3r(1 - p)érS 0
—(STL - W
0 0 0 0 0 BvivS
+/3V6\/L
—w

The 5 x 5 intrinsic Jacobian does not have straightforward eigenvalue expressions. The

intrinsic systemn can be invaded by virulent phages if

Bvéy(S+L)—w>0. (2.5.23)

We do not have feasibility conditions for E8. The Jacobian for E8, in the order
(R,S,L,T,V,B), is:
J(EB) =
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~ (RL —cyr(R)(1—as) —epi(R) 0 0 —eg(R)
- (R)S +aped (i)
+ageyy (IS
TJDZ(R){;' ) U’L(RZ(I - as) 3 -8 -0y $ 0
——(ys'u’,"L(R)S 07T —- 6y V
-
L(R)L porT Y1 (R) por 8 ~dvL 0
—i—£
—5vV - W
0 pr(1 = p)orT il Br(1 = p)érS 0 0
—5'1*'1' —-JTI: - W
0 By dyV Byoy V 0 By (S + 1) 0
—Ww
0 0 0 0 0 (1 — ag)r(R)
—w

The 5 x 5 intrinsic Jacobian does not have straightforward eigenvalue expressions. The

intrinsic system can be invaded by resistant cells if

(1—ap)¢L(R) > w. (2.5.24)

We are not able to derive straightforward feasibility and stability conditions for E9.

Figure 2.5 shows examples of all 9 equilibrium types. Figure 2.5(A) shows an
El equilibrivmn, in which a high flow rate (w = 0.7) causes the extinction of all 5
populations. This equilibrium is feasible because R = Ry > 0. The stability conditions
(obtained by requiring the eigenvalues (2.5.3)-(2.5.6) to be negative) are satisfied.

In the E2 equilibrium shown in Figure 2.5(B), the increased growth rate of sen-
sitive cells (as = —0.04) enables their population to survive. The feasibility condi-
tions (2.5.7) and (2.5.8) are satisfied. The eigenvalues of the intrinsic stability matrix
(given by (2.5.9) and (2.5.10)) are both negative, and the extrinsic stability conditions
(as described in Section 2.5.2) are also satisfied.

Figure 2.5(C) shows an E3 equilibrium with only resistant cells present. Although
sensitive cells have a growth rate advantage over resistant cells, sensitive cells are elim-
inated owing to the high adsorption rate of the virulent phages (§y = 1073) (and with
no sensitive cells present. the virulent phage population cannot survive either). The
feasibility conditions (2.5.11) and (2.5.12) are satisfied, and the eigenvalues ((2.5.13)-

(2.5.16)) of the E3 Jacobian are all negative.
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Figure 2.5(D) shows an E4 equilibrium with sensitive cells and virulent phages
present. Resistant cells have a significant growth disadvantage compared to sensitive
cells. and temperate phages have a lower burst size and adsorption rate compared
to virulent phages. The feasibility conditions (2.5.17) is satisfied. We do not have
straight{forward criteria for intrinsic stability, but the conditions for extrinsic stability
(as described in Section 2.5.2) are satisfied.

In Figure 2.5(E), an E5 equilibrium with sensitive cells, lysogens and temperate
phages is shown. The burst sizes of temperate and virulent phages are the same (they
are both equal to 100), but the adsorption rate for temperate phages is much higher
than for virulent phages. We do not have expressions for feasibility or intrinsic stability.
The conditions for extrinsic stability (obtained by requiring the eigenvalues (2.5.18)
and (2.5.19) to be negative) are satisfied.

An EG cquilibrium is shown in Figure 2.5(F), with sensitive and resistant cells
coexisting with virulent phages. Here the growth rate disadvantage of resistant cells
is lower (ap = 0.1) than for the preceding equilibria, and virulent phages have a
superior burst size and adsorption rate compared to temperate phages. We do not have
expressions {or {easibility or intrinsic stability. The conditions for extrinsic stability, as
described in Section 2.5.2, are satisfied.

Figure 2.5(G) shows all populations coexisting apart from virulent phages. Here
temperate and virulent phages have the same burst size, but temperate phages have
a much higher adsorption rate than virulent phages. We do not have expressions for
feasibility or intrinsic stability. The condition for extrinsic stability (given by (2.5.23))
is satisfied.

Figure 2.5(H) shows all populations coexisting apart from resistant cells, whose
growth rate disadvantage (ovp = 0.7) is too great for them to survive. We do not have
expressions for feasibility or intrinsic stability. The condition for extrinsic stability
(given by (2.5.24)) is satisfied.

An E9 equilibrium with all 5 populations present is shown in Figure 2.5(I). We do

not have straightforward feasbility and stability criteria for E9.
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Figure 2.5: Numerical simulations for Model 5 (R=resources, B=resistant bacteria,
V=virulent phages, L=Ilysogens, S=sensitive bacteria, T=temperate phages). Nine
equilibrium types are shown: (A) Resources only (w = 0.7,vg = —0.02) (B) Resources
and sensitive cells (w = 0.7) (C) Resources and resistant cells (ag = —0.032,ap =
—0.025,w = 0.69,dy = 107%) (D) Resources, sensitive cells, and virulent phages (ap =
0.7, 87 = 107 1) (E) Resources, sensitive cells, lysogens, and temperate phages (81 =
100,67 = 1072,8y = 10~11) (F) Resources, sensitive cells, resistant cells, and virulent
phages (ap = 0.1,0r = 10~ (G) All populations apart from virulent phages (ap =
0./r = 100,07 = 1074y = 107") (H) All populations apart from resistant cells
(ap = 0.7) (I) All populations. Except where otherwise indicated, the parameter values
are: Rp = 100,e =5 x 1077,r = 0.7,k = 4, fr = 80,8y = 100,67 = 8 x 10719, 4y =
10710, ag = —0.04, ap = 0.4,& = 0.001,7 = 0.001,p = 0.001,w = 0.5.
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2.6 Discussion

Characteristically resistant cells will always invade an existing equilibrium, provided
that their growth rate is greater than the flow rate. This is clear from the eigenvalues
of the full or extrinsic Jacobians for Model 3 (E1, E3, and E4) and Model 5 (E1, E2,
E4, E5, and E8) - each of these sets of eigenvalues includes the term (1 —ap)y L(fl) —w.
We have assumed throughout that resistant cells have a growth disadvantage compared
to sensitive cells. Thus, if there is a population of sensitive cells present in the initial
equilibrium, then these will coexist with an invading resistant population if their growth
advantage is sufficient to compensate for depletion via phage infections. If the difference
in growth rates between the two populations is sufficiently small then the presence
of resistant cells will drive the sensitive cell population to extinction, as shown in
Figure 2.5(C).

The ability of virulent phages to invade an existing equilibrium depends partly on
which species are present in the equilibrium. If neither sensitive cells nor lysogens are
present, then the virulent phages will have no cells to infect and therefore they cannot
invade. If sensitive cells or lysogens or both are present, as in Model 4 (E2 and E4) and
Model 5 (E2, E5, and E7), then a virulent phage population with a high enough burst
size (3v) and adsorption rate (dy) will be able to invade. We can see this by considering
the invasion eigenvalue for each of these equilibria. For the equilibria which include
sensitive cells but no lysogens (i.e. Model 4, E2 and Model 5, E2), this eigenvalue
is given by By oy S — w, while for the equilibria which include both sensitive cells and
lysogens (i.e. Model 4, E4 and Model 5, E5 and E7), the eigenvalue is ﬁ\,'dv(S' + Ii) —w.
Note that if the product 3y 3y is sufficiently high then the presence of virulent phages
will lead to the extinction of the available host cells and consequently the extinction of
the phage population as well, as shown in Figure 2.5(A).

The ability of temperate phages and their lysogens to invade also depends on which
species are present in the existing equilibrium. If sensitive cells are not present (as in
Model 1 (EL), Model 2 (E1), Model 3 (E1 and E2), Model 4 (E1), and Model 5 (E1
and E3)) then the phages will have no potential host cells to infect. However, if the
growth rate of the lysogens (wL(IA{)) is greater than the combined rates of induction,
segregation (i.c. the rate at which lysogens become sensitive cells again, as a result of
losing their prophage), and outflow, then an invasion by lysogens is possible. In each
of these equilibria, the invasion eigenvalue is given by y.(Rg) — i — § —w. Thus we
have obtained the new finding that the conditions for a successful invasion depend only
on the characteristics of the lysogens (i.e. growth rate, induction rate, and segregation
rate), and not on the characteristics of the phages (i.e. burst size and adsorption

s

rate). The presence of the lysogens would in turn lead to sensitive cells and temperate
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phages appearing in the environment via the processes of segregation and induction
respectively. Lf sensitive cells are present in the initial equilibrium (as in Model 2 (E2),
Model 3 (E3), Model 4 (E2 and E3), and Model 5 (E2, E4, and E6)), then characteristics
of the phage population as well as the lysogen population will be relevant in determining
whether an invasion is possible; thus, for these equilibria, there are two relevant invasion
eigenvalues - one for the lysogens and one for the temperate phages - and in each case

these are obtained from a 2 x 2 matrix of the form

d’L(I}) — (5\/ V p(S'I'S
—i—w~¢

iBr Br(1 = p)érS
— W

A high burst size and adsorption rate will improve the chances of a successful invasion
by the phages (but as with virulent phages, there is a risk of the sensitive cells becoming
extinct if the rate of phage infection is too high). If virulent phages are present in the
initial equilibrium then this will make invasion by lysogens more difficult, since some
of the lysogens will be infected and lysed by virulent phages.

The question of why temperance evolved as a characteristic of certain phages is
unresolved, but models such as the ones analysed in this chapter can provide some
clues, and also suggest directions for future investigations. The models can also indicate
which conditions will favour populations of temperate phages over virulent ones.

Assuming that there is a plentiful supply of resources and sensitive cells present in
the environment, the outcome of competition between temperate and virulent phage
populations will depend on the parameter values, in particular: (i) the relative adsorp-
tion rates and burst sizes of the two populations; (ii) the probability of lysogeny and
the induction rate of the temperate phages. Given an equilibrium of virulent phages
and sensitive cells (Model 4, E3) the analysis showed that the conditions for a suc-
cesslul invasion by temperate phages and lysogens are more likely to be satisfied if the
probability of lysogeny p and the induction rate ¢ are both low.

In a lysogen the prophage provides the bacterial host with new genes. For example,
when Stx phages form lysogens with E. coli, the host cell acquires new DNA, including
the genes which code for Shiga toxins. Some of this additional DNA may have an
influence on the fitness of the lysogen (Smith et al, 2007). For example, Shiga toxins
are only relcased on induction and lysis (i.e. death) of a host cell, but this release of
toxins may result in the creation of more favourable conditions for the remainder of
the lysogen population. The release of Shiga toxins causes bleeding in the mammalian

gut, thus providing a source of iron to surviving lysogens from decaying blood cells
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(Canchaya et al, 2004).

Virulent phages run the risk of being too virnlent and lysing the entire population
of sensitive cells, so that the newly released phages cannot reproduce, and the phage
population becomes extinct. Temperate phages do not risk extinction in this way,
because even if all sensitive cells are infected by temperate phages, some of these will
hecome lysogens which will preserve the phage DNA. Thus, phages may have evolved
to be able to lysogenize their hosts as a method of surviving periods when the supply of
sensitive cells is low. The level of resources present in the environment, which may vary
over time, will also affect the sensitive cell population. Note that the models considered
in this chapter assume a constant input resource concentration, and therefore do not
consider the impact of resource variability on populations of phages and bacteria; both
Stewart and Levin (1984) and Mittler (1996) show briefly how seasonal variations in
resource levels may be incorporated into their population dynamical models, but there
is much scope for future research in this area.

In this chapter we have considered population dynamical models of phages and
bacteria. This work provides the basis for modelling the evolution of temperate phages

in Chapter 3.
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Chapter 3

Adaptive Dynamics of Temperate
Phages

3.1 Introduction

Temperate bacteriophages (phages) select between two developmental pathways
following adsorption to a host bacterial cell. These pathways are known as lysis and
lysogeny. During lysis, many copies of the phage are produced and then released when
the cell is lysed. If the lysogenic pathway is selected, the phage genome is inserted into
the bacterial genome and replicated passively every time the cell divides. Following
creation of a lysogen, a process known as induction may be initiated at a later time,
leading to lysis of the host cell and the release of new phage particles. In the extensively
studied temperate phage lainbda, an increasingly well understood molecular switching
mechanism sclects between the two pathways, and can also initiate induction of a lyso-
gen (Ptashne, 2004; Evans et al, 2007). For the purposes of this chapter the behaviour
of the switch is characterized by two parameters: the probability of lysogeny (p) and
the lysogen induction rate (#).

Using a chemostat model, Mittler (1996) investigated the outcome of pairwise
competition between phage strains with different (fixed) values of i and p. In this
model, strains with low valnes of both p and i were found to be strong competitors and
generally able to invade when rare. It was speculated that this may be the reason why
well-studied temperate phages such as phage lambda, Mu, and P1 have all evolved to
have probabilities of lysogeny lower than 0.5 and induction rates of the order of 0.00001
per cell and generation (assuming that cells are not starved and are infected by a single
phage) (Kourilsky, 1973; Howe and Bade, 1975; Rosner, 1972); in theory p could be
anywhere between 0 and 1, and ¢ conld be any non-negative number. The aim of this
chapter is to investigate the evolution of the parameters p and .

The theory of Adaptive Dynamics (Geritz et al, 1998) provides a framework
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for modelling the evolution of a single trait within a population. Initially there is a
resident population of identical individuals at equilibrinm, but small mutations can
occur in this population. If a few mutants emerge, they may simply die out so that
the previous equilibrivin is restored; alternatively, their population may grow so that
they eventually replace the existing resident population. Evolution thus proceeds via
a series of small mutations. Evolutionary singularities play a central role, and they
can be of various types corresponding to very different evolutionary outcomes. They
can be attractors (commonly associated with the long-term emergence of intermediate
trait values), repellors (‘extreme’ trait values) or branching points (dimorphisms/trait
coexistence).

In the present chapter,the methods of Adaptive Dynamics are applied to the
Mittler (1996) model. The aim is to determine which evolutionary outcomes are pos-
sible in this model, and to interpret these outcomes biologically. In common with
applications in many other areas (e.g. Bowers and White (2002), de Mazancourt and
Dieckmann (2004)), a constraint is introduced such that i = f(p) for some function f.
Sowe analytical results are derived which can be used to locate and classify the evolu-
tionary singularities of the system, and we explore the importance of the shape of the
function f in determining the number and nature of the singularities. The theoretical

results obtained are illustrated with a number of examples.

3.2 A two-strain model

The chemostat model of host-phage interactions as described by Mittler (1996)
consists of two phage strains (P} and P») and their associated host lysogens (L; and
L, respectively). There is also a flow of sensitive bacteria (5) and resources (RR) into
the chemostat. Following adsorption of a P; phage to a sensitive bacterial cell, an L,
lysogen may be formed, while adsorption of a P phage may result in the formation of
an Loy lysogen. Straius 1 and 2 differ only in their probabilities of lysogeny (p; and po

respectively) and their induction rates (i; and 72). The model is given below:
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dR

— = w(Ro-R)—er(S+Li+ L)R/(R+K) (3.2.1)
(j,—: = w(Sy—8)+7rSR/(R+k)+ &L+ La) - 0SSP - 05P,  (3.2.2)
d(—l]f = p16SP +rLiR/(R+ k) —i Ly — €Ly — wlL, (3.2.3)
:{dLT = pa0SPy+rLaR/(R+ k) —igLy — €Ly — wlo (3.2.4)
fif—tl = (1 -~ p1)A8SP + 3itLy ~ 8(Ly + Lo) Py - wh (3.2.5)
i{% = (L= p2)B0SPs + BigLy = §(Ly + Lo) Py —wP (3.2.6)

Here w is the chemostat flow rate, and Ry and Sy are the concentrations of resource
and susceptible bacteria in the input reservoir. Thus resources and susceptible bacteria
enter the habitat at rates of wRg and wSy respectively. Similarly, all of the constituent
species within the habitat are washed out at a rate proportional to w. The growth rates
of susceptible bacteria and lysogens are related to the availability of resources via the
Monod function rR/(R + k) (Monod, 1949), where 7 is the maximal growth rate and
k is the resource concentration at which cells grow at half their maximal growth rate.
The efficiency with which cells take up resources is measured by the parameter e, so
that resources are consumed at a rate of er R(S+ L1+ La2)/(R + k). The parameter § is
associated with the rate at which free phages encounter and adsorb to bacterial cells.
The probability that a phage of strain P; (P;) will form a lysogen with its bacterial
host is denoted py (p2), and i (i2) is the spontaneous induction rate for a lysogen
of type Ly (L). Those phages which do not form lysogens will enter the lytic cycle
immediately following adsorption to a susceptible bacterial cell. Following lysis of an
infected cell. the number of newly created phages is given by the burst size, 4. The
parameter § allows for the event of a lysogen losing its prophage and thus returning
{o its original state of a susceptible bacteria. The model assumes that lysogens are
immune to further infection by either phage strain.

Now suppose that there is a resident population of strain 1 and its lysogen at
equilibriun. Strain 2 and its lysogen will be able to invade when rare if the following

condition is satistied (Mittler, 1996; see Appendix A for a derivation):

Q1 i)*v(p1i) + Qpr.i1 )iz — Q(pr, i )n(pr,ia)p2 > 0 (3.2.7)

where
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1p,i) = P*/BL
u(p,i) = 68*P*/L”
Qp.i) = (BpdS*P* — BiL*)/ I

and §*, L*, and P* are the equilibrium densities of S, L, and P for a resident phage
with parameters p and 7. It can be seen from (3.2.7) that the value of Q(p1,i1) will be
important in determining whether or not strain 2 can invade. If Q(p;,i;) is positive
then a strain with low pp and a high 7 can invade, while if Q(p;,i;) is negative then a
strain with a high p; and a low i can invade.

By sctting the right hand side of Equation (3.2.5) equal to zero, and re-

arranging, the expression for Q(p, i) can be shown to be equivalent to:

Q(p,i) = B68* - L* —w

and so Q(p, i) can be interpreted as the net rate at which the phage population would
increase if the probability of lysogeny were zero.

We now summarise some observations regarding the function @ which were
stated in Mittler (1996). Firstly, if Q(p1,41) and Q(pg,i2) have opposite signs then
hoth strains can invade when rare and the two strains will coexist. On the other hand,
if Q(py.i1) and Q(pa.i2) have the same sign then the strain with the lower value of
|Q| can invade when rare, while the strain with the greater value of |Q| cannot invade
when rare. Furthermore, if the resident has @ = 0 then invasion is not possible by any
mutant strain; if the mutant has Q = 0 then it can invade any resident with @ # 0, but
will not drive it to extinction. The results which we obtain using adaptive dynamics

will shed further light on these observations.

3.3 The adaptive dynamics approach

The approach used by Mittler (1996) involves modelling the outcome of competition
between two fixed phage strains, whercas the adaptive dynamics approach enables
repeated mutation and selection to be modelled. We aim to investigate long-term
evolutionary outcomes for temperate phages using this approach, in the context of an
equitable environment.

We assume that there is a function f such that i = f(p). This represents
constraints in the system or trade-offs corresponding to cost-benefit dependencies (for
general discussions see Bowers et al, 2005, de Mazancourt and Dieckmann, 2004, and

Ruefier et al, 2004). Then, using (3.2.7), we obtain the following function:
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sp(p2) = Q1)*¥(p1) + Q1) f (p2) — Qpy)ilpr)p2 (3.3.1)

We shall refer to s, (p2) as the mutant’s fitness function, since it is (by the argument
of Appendix A) sign equivalent to the dominant cigenvalue of the invasion Jacobian.
This eigenvalue is taken as the standard definition of fitness (Geritz et al, 1998), but
any sign equivalent quantity is acceptable (e.g. Giafis, 2007).

Since s, (p1) = 0, we can re-write (3.3.1) as:

S (pZ) = 8 (pz) — Spy (p’)
= Q) [f(p2) -~ f(p1) - w(p1)(p2 - )] (3.3.2)

From (3.3.2) we sce that a cost-benefit interpretation of i = f(p) suggests
J'(p) > 0: otherwise both contributions in the second factor will have the same sign.

The sign of Q(p1) plays a role here as discussed later.
g 3

3.3.1 Location of singularities

An evolutionary singularity p* occurs at any point at which the partial derivative
Dsp, (p2)/0p2 evaluated at py = p = p* is equal to zero. At such a point, the partial
derivative Js,, (p2)/0m will also be zero (Geritz et al, 1998). Differentiating (3.3.2)
with respect to pa and setting this equal to zero, we have

QW) [f'(") — ()] =0 (3.3.3)

and so there is a singularity at any point p* where one of the following expressions

holds:

QY =0 (3.3.4)

or

fi(p*) = ulp”) (3.3.5)

The expression Q(p,i) = 0 describes a straight line in (p,i) space (see Ap-
pendix B). Condition (3.3.4) indicates that there will be a singularity at any point of
intersection between the trade-off function and the line Q(p, i) = 0. Condition (3.3.5)
tells us that there will be a singularity at any point at which the gradient of the trade-
off function is equal to the value of i, These are new results which can be used to

locate all the evolutionary singularities easily.
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3.3.2 Classification of singularities

Having located the singularities, the next step is to classify each singularity as an
attractor. a repellor, or a branching point. To do this we need to use the second order

partial derivatives of the fitness function. Define a and b as follows:

o
a= O%sp, (p2)
= —
()pl plzpzzp"
920 ¢,
b= d Spy (p2)
= — "
d[)Z p=pa=p*

By differentiating (3.3.2) twice with respect to p2, we obtain the following expression

for b:

b=Q®)f"(»") (3.3.6)

and by differentiating (3.3.2) twice with respect to p;, we find

dQ(p)
dp

() - o)) - fiidip—)

a=-Qp)f'p) -2 [ Q(p*)J (3.3.7)

p=p p=p*

and this expression can be simplified using either (3.3.4) or (3.3.5) as appropriate. For

a singularity which satisfies (3.3.4), we have

dQ(p)
[

(f'(p*) - u(p*))} (3.3.8)

p=p*

while for a singularity which satisfies (3.3.5), we have

a = Q@) (? 1%)2 - f"(P'))
p=p*
dp p=p*

Now, a singularity p* is evolutionarily stable (ES, or by common usage ESS)

if b < 0 at p*, and this means that no nearby mutant can invade. The singularity p*
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is convergence-stable (CS) if a — b > 0, and this means that a nearby mutant can be
invaded by mutants which are even closer to the singularity (Geritz et al. 1998).
The above results and definitions provide us with the tools we need in order

to classify any singularity which may arise, as described below.

Singularities with Q = 0

Suppose that p*satisfics (3.3.4) but not (3.3.5). In this case b= Q(p*)f"(p*) =0,
and so p* is marginally ESS. It turns out that p* must also he CS. To see this note that
p* will be CS if @ > 0 (since b is zero). There are two cases to consider: (i) f'(p*) < po
and (ii) f'(p*) > po, where jig is the gradient of the line Q = 0 in (p,i) space. The two
cases are dealt with below.

To begin with, note that Q is positive below and negative above the line Q = 0
in (p, ) space (sce Appendix B). If f'(p*) < po, then we have Q(p* — ¢, f(p* —€)) < 0,
QWp*, f(»*))=0, and Q(p* + ¢, f(p* +¢€)) > 0, for small € > 0. Therefore d—%()m

. s .
is positive, and so a = -2 [‘Q}S)P)

that if f/(p*) > o then d—(fh(,ﬂ)-

claimed.

p=p*

p=p* (f'(»*) = 1o))| > 0. A similar argument shows

must be negative and hence a > 0 and p* is CS as
p=p*

Thus if Q(p*) = 0 and f'(p*) # o, then p* is a marginally ESS attractor.

Singularities with @ # 0

Now suppose we have a singularity p* which satistics (3.3.5) but not (3.3.4). Us-
ing (3.3.6), this singularity will be ESS if and only if Q(p”) and f”(p*) have opposite
signs. Using (3.3.9), we need to find %' . in order to determine the value of a;
it turns out that this partial derivative 1'1'1upszpa,lways be zero (see Appendix C), and
therefore a = b,

Since a = —b, a singularity of this type must either be (i) both ESS and CS,
or (ii) ncither ESS nor CS (note that branching points, which are CS but not ESS, are

not possible in the current setting). Thus, using (3.3.6), there are four possible cases:

Q") <0,f'(p*) > 0 => p’is an attractor (ESS, CS) (3.3.10)
Q(p*) <0, f'(p*) < 0 = p*isa repellor (not ESS, not CS) (3.3.11)
Q(p*)>0.f"(p*) > 0 = p*is a repellor (not ESS, not CS) (3.3.12)
Q") >0, f"(p*) < 0 = p*is an attractor (ESS, CS) (3.3.13)

Note (see Equation (3.3.2)) that if @ > 0 then an increase in i is a benefit and an

increase in p is a cost; on the other hand, if @ < 0 then an increase in i is a cost while
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an increase in p is a benefit. Therefore the above conditions can be re-written as:

f deceleratingly costly = p* is a repellor (not ESS, not CS)
f acceleratingly costly == p* is an attractor (ESS, CS)

It can also be shown (see Appendix C) that for any singularity p* which

satisfies (3.3.5), we must have that

dQ
dp

Thus, the value of Q is either locally maximised or locally minimised at p*.

=0

p=p"

Singularities which satisfy both criteria

Now suppose we have a singularity which satisfies both (3.3.5) and (3.3.4). In this
case a and b will be zero, and the singularity will be on the borderline of both the ES

and the CS conditions.

3.4 Some examples

Here we present four examples which illustrate how the use of different trade-off
curves can result in different mumbers and types of singularities. Figure 3.1 shows some
contours of the function @ for our chosen set of parameter values, and in particular
shows the location of the line @ = 0. In order for the relationship ¢ = f(p) to represent
a trade-off, f mmst be an increasing function of p (as discussed in Section 3.3). The

general form of the trade-off functions used is as follows (White et al, 2006):

(inm.x - imm)(l — _P_llm_yl_)

—_ . Pmar~Pmin
f(l)) = tmax (l N o(P=pmin) ) (3.4.1)

Pmaz —Pmin

The value of the parameter a determines the curvature of the trade-off function. The
value of « is taken to lie in the interval (—1,00). If « lies in (0,00) then the trade-off
is acceleratingly costly. If o lies in (-1,0) then the trade-off is deceleratingly costly.
We use pairwise invasibility plots (PIPs) (Geritz et al, 1998) to illustrate the
examples. These show the sign of the mutant’s fitness for all possible combinations of
p1 and py. The mutant’s fitness along the leading diagonal is always zero, because the
resident population is at equilibrium and mutant and invader are identical. Evolution-
ary singularities occur at any point of intersection between the leading diagonal and
another line along which the mutant’s fitness is zero, while the pattern of signs around

a singularity determines the nature of the singularity (Geritz et al, 1998).
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For cach example below we use a PIP and a plot of the line = 0 and
the trade-off function to illustrate the way that the singularities shown in the PIP
correspond to different points along the trade-off function. We also show the results
of simulating the mutation-selection process in a multi-strain model, to show how the
resident strategy evolves either towards an attractor or away from a repellor (Miller et
al, 2005; White and Bowers, 2005; Bowers et al, 2005).

3.4.1 An attractor

For this and the remaining examples, i is constrained to be an increasing function
of p (White et al, 2006):

. (i'rn,a:c ~ Ty )(1 - —P—_P"”—")
f(p) = bnar — ln”( — I.)"“’J'"pmm (34'2)
(1 + P=Pmin) )

Pmazx—Pmin

The PIP (Figure 3.2(A)) shows that there is a singularity near p = 0.6. The
pattern of signs around the singularity (iminus signs above and below, plus signs to the
left and right) indicates that it is an attractor.

Figure 3.2(B) shows the trade off function and the @ = 0 line in (p, i) space.
There is no point of intersection between the two lines, and so there are no solutions
to (3.3.4). The point p* on the trade-off curve at which (3.3.5) is satisfied (i.c. the
slope of the trade-off curve is equal to the value of the function ) corresponds to the
singularity identified in the PIP. Solving (3.3.5) numerically yields a value of p* = 0.597.
The tangent to the trade-off curve at (p*, f(p*)) is also shown in the Figure.

Tlhe results of a dynamical simulation for this scenario are shown in Fig-
ure 3.2(C). Starting with an initial resident strain with a value of p around 0.2, evolution
proceeds via small mutations towards the attractor p*.

Both the PIP-based approach and the dynamical simulations corroborate
the algebraic theory of Section 3.3. Since numerical evaluation gives Q(p*) < 0 and

["(p*) >0 Statement (3.3.10) indicates that p* is indeed an attractor.

3.4.2 A repellor

The PIP (Figure 3.3(A)) shows that there is a singularity near p = 0.24. This time,
the pattern of signs around the singularity (plus signs above and below, minus signs to
the left and right) indicates that it is a repellor.

Figure 3.3(B) shows the trade off function and the @ = 0 line in (p,7) space.
There is no point of intersection between the two lines, and so there are no solutions
to (3.3.4). Solving (3.3.5) numerically yields a value of p* = 0.237. The tangent to the

trade-off curve at (p*, f(p*)) is also shown in the Figure.
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The dynamical siimulation illustrated in Figure 3.3(C) shows evolution directed
away [rom the singularity p* and towards the extreme value p = 0.1.
Since evalnation gives Q(p*) < 0 and f”(p*) < 0, Statement (3.3.11) confirms

that p* is a repellor.
3.4.3 Multiple singularities (I)

The PIP in Figure 3.4(A) shows three singularities, which we will refer to as p}, p3,
and p3 (where p] < p3 < p}). The central singularity p} (around p = 0.73) is a repellor,
while p} and p} are marginally ESS attractors.

Figure 3.4(B) shows the trade off function and the Q = 0 line in (p,4) space.
There are two points of intersection between the two lines, and so we expect to find
two solutions to (3.3.4). Solving (3.3.4) numerically yields values of p; = 0.531 and
py = 0.851. We can also solve (3.3.5) numerically to find ps = 0.730.

A dynamical simulation for this scenario is shown in Figure 3.4(C). Starting
with an initial resident strain with a value of p close to the repellor P35, evolution
proceeds via small mutations away from the repellor and towards the lower attractor
pi-

For p} we have @ > 0 and f” > 0, and so (3.3.11) confirms that p} is a repellor.

3.4.4 Multiple singularities (II)

The example shown in Figure 3.5 is similar to the previous example except that the
curvature of the trade-off function has been changed from concave to convex. There
are still a single repellor (p3 = 0.652) and two marginally ESS attractors (p} = 0.532
and pj = 0.842).

This example and the previous one illustrate the point that if the trade-off
function intersects the line @ = 0 at two distinct points - p, and py, say (with p, < ps)
- then there must be a point p, (where p, < p. < pp) corresponding to an evolutionary
repellor.

For py we have Q < 0 and f” < 0, and so (3.3.11) confirms that p} is a repellor.

3.5 Discussion

We have applied the methods of Adaptive Dynamics to the chemostat model of
Mittler (1996). This approach has enabled us to develop and extend Mittler’s work,
and in particular to model the continuous evolution of temperate phage strains via
small mutations.

We have shown that the location and nature of the evolutionary singularities

depends on the shape of the function f (which relates the parameters i and p) and also
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on the position of f relative to the straight line Q = 0. Marginal attractor singularities
occur at points of intersection between f and the ¢ = 0 line. Singularities also occur
at points along f at which f" is equal to the value of the function u; at a singularity of
this type, the value of |Q] is locally maximised or minimised.

We have established that. in contrast to other studies in adaptive dynamics
(c.g. Boots and Haraguchi (1999), White and Bowers (2005), Miller et al (2005)).
evolutionary branching does not occur in the present setting. It would be instructive
to carry out experimental work into the occurence of branching in real populations of
temperate phages.

The gradient of the @ = 0 line is equal to the value of the function p and
is therefore always positive (as shown in Appendix B). However, any change in the
non-evolving parameter values (e.g. the input concentrations of resources or sensitive
bacteria) which alters the equilibrium levels of the populations will also alter the Q@ = 0
gradient, and possibly the nature of any singularities. For example, a repellor at which
the value of Q is initially positive will become an attractor if there is a change in the
paraneter values which causes the slope of ) = 0 to decrease sufficiently; i.e. the
singularity now appears on the other side of the @ = 0 line, so that its Q value is
negative. Therefore the choice of parameter values is particularly important in cases
where singularities occur close 1o the Q@ = 0 line.

Provided that 7 is an increasing function of p, then it is possible for f to
intersect the line @ = 0 at two seperate points, and these will correspond to marginal
ESS attractors. When this happens, there will always be a repellor in between the two
attractors, as in Figures 3.5 and 3.6.

As mentioned in the introduction, phage lambda and other well-studied tem-
perate phages have evolved to have values of i and p at the lower end of the ranges
of possible values. In the adaptive dynamics framework, this could occur as a result
of evolution away from a repellor (as in Figure 3.4). Phages with low values of 7 and
p are likely to perform better than other phages when the environment is subject to
variation, since they will be able to survive lean periods (via lysogenic infections) but
also to compete strongly (via lysis) when resources and sensitive bacteria are plentiful
(sce Mittler (1996) for a discussion of this point).

By assuming that f' > 0, we have been able to interpret i = f(p) in terms of a
cost-henefit relationship in which the function f represents a trade-off. If we allow an
interpretation in which, while f represents a constraint, changes in ¢ and p are such that
f' < 0. then our results change. In this case there will be a marginally ESS attractor at
the (single) point of intersection between f and the line Q = 0 (if such a point exists).
However, no other singularities are possible: the contours Q =  in (p,i) space are

straight lines with a positive gradient (as shown in Appendix B), and therefore if f has

69



a negative slope there will be no point on f whose tangent coincides with a contour of
(). and therefore no point at which |Q)] is either locally maximised or locally minimised.
An example of this type of scenario is shown in Figure 3.6.

We have shown (Appendix A) that whereas a temperate resident phage can
be invaded by a virulent mutant (depending on the sign of 1), a virulent resident can
not be invaded by a temperate mutant, in the present setting. This raises the question
of why temperate phages emerged in the first place (assuming that they have evolved
from virulent phages). The role of environmental Huctuation is likely to form part of
the answer to this. Population models which include an environmental fluctuation term
have been discussed by Stewart and Levin (1984) and Mittler (1996). In the present
chapter we have considered a constant input of resources and sensitive bacteria to the
chemostat, but it would be interesting to study models of phage evolution in the context

of a fluctuating environment.

3.6 Appendix A: The fitness function

Here we present an outline of the method used to derive the fitness function sp,(p2).
Let R*. S*. L}, and P{ be the equilibrium values of R, S, L, and P; calculated

from equations (3.2.1), (3.2.2), (3.2.3), and (3.2.5), with Ly = P, = 0. To see what
will happen if a small munber of mutant type 2 phages and lysogens emerge, we can

consider the linearized system

1L ]
Lo o[RBT+ — i~ €~ lLs + [0S P
dl .

= [3ig] Lo + [B(1 — p2)8S* — 6L} — w| Py

Now we assume that pa and i3 are both greater than zero. Strain 2 and its
lysogen can invade when rare if the above system has at least one positive eigenvalue.

The cigenvalues are the solutions of

(a = X)(d =) —be=0,

where a = rR*/(R*+k)—ig =€ —w, b= padS*, ¢ = fig, and d = B(1 - p2)dS* — 6L} —w.
There will be a positive eigenvalue if either ad < be or (a + d) > 0, or both. In fact, it
is only necessary to consider the condition ad < be, since it can be shown that it is not
possible for both a and d to be positive (see Mittler, 1996); if one of them is positive and
the other is negative then then there will certainly be an positive eigenvalue, because

ad < be. 1f both « and d are negative then a + d < 0, and so there will only be a

70



positive eigenvalue if ad < be holds. Thus, checking the condition ad < be covers all
possibilites.

It is straightforward to show that the condition ad < bc is equivalent to

(»)(pl!il)z'\!(pl- ']) + Q(Pl- ’])12 - (2([)1,'i1)[l(]')1 . 7])1)2 >0

where y(p.i) = P*/3L* p(p,i) = 88*P*/L* and Q(p.i) = (3pdS*P* -~ BiL*)/I*
(Mittler, 1996).

In the special case of a virulent mutant, i.e. ps = i> = 0, then there are no
L, lysogens and there is a single invasion eigenvalue \ = 36S* — 5L} —w = Q(p1,i1).
Therefore a resident strain can be invaded by a virulent mutant if Q(py,i;) > 0; on the
other hand, if @(p1.i1) < 0 then a virulent mutant can not invade.

In the special case where the resident phage is virulent, i.e. p; = @3 = 0,
then Q(p1.71) = 0 and so the fitness of an invading mutant (i.e. Q(p1.i1)*v(p1,11) +
Q(p1.ir)ia — Q(p1. i1)p(p1,i1)p2) will be zero for any values of py and iy. Therefore no
mutant phage can invade.
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3.7 Appendix B: The @ function

Here we show that given a real number z, the line Q(p, 7) = z (if it exists) is linear in
(p. i) space. Setting the right hand sides of equations (3.2.1), (3.2.2), (3.2.3), and (3.2.5)

all equal to zero (with I% = Ly = 0), and using the relationship Q(p, i) = x, we obtain:

0= w(Ro— R*) = er(S* + L)YR*/(R* + k)

0= w(So= 8~ r§"R'/(R" + k) + €L} — 08" P}
0= r4 SrLiR B BEL, B Bwly
P](R + k) P P

0= - a+0688 0L, —w

Since p and ¢ do not appear in the above equations, the values of R*, $*, L}, and Py}
are constant along the line Q(p,4) = .

Since Q(p, i) = (Bp1d P §* - Bi L])/ P}, the line Q(p, i) = z must be a straight
line through the origin with gradient §PFS*/L} and intercept —~xP; /(8L;) (where R*,
S*, L}, and Py are obtained from the four equations above). Note that the gradient is
equal to the value of the function s, and that all points along the line Q(p, 1) = = must
have the same value of p.

To show that Q(p,i) is positive for all points below the line Q(p,i) = 0,
we can cousider the single point (p,0), where 0 < p < 1. At this point, we have
Q = (BpdsS*Py)/ Py > 0.

To show that Q(p,i) is negative for all points above the line Q(p,i) = 0,
we can consider the single point (0,7), where 0 < i < 1. At this point, we have
Q= —-00L/Py <.

72



3.8 Appendix C: Derivatives of 1 and @ at p*

In this section, we assume that p* is a singularity which satisfies Equation (3.3.5)

of the text.
(i) Differentiating s

To find the derivative of g at p*, we begin by setting the right hand sides of Equa-
tions (3.2.1), (3.2.2), (3.2.3), and (3.2.5) all equal to zero (with Py = Ly = 0 and
= f(p)). to obtain four equations ol the form:

Hi(R
f2(R,S, L, P,p) =0
f3(R,S,L,P,p) =0
fa(R,S,L,P,p) =0

,AS L,P[))——O

and now we can write

af1 o, 0f1 8f1 ., 0N ’ dfl
8+ =L+ =
Rt as¥ tarttepl T, =0

()fQ ’ df2 af2 ’ an / df?
G2y J2pr =
Rt tart tept 5, 7O
afs o, Ofs o, 0Ofz, ()fi ' ‘7f3
g Dspr.
R Yo vt tapt 5, 7O
Ofs 1y Ofaw  Ofapy  Ofs f
Olapry = 0.
IR aRE+ a8 750+ oL oP sl op 0
Thus
or R : 0
85 s i 0
gz v 8|7 ssp-rr
5L P of —B8SP + Bf'L
¢ P

The vector on the right hand side of the above expression apparently has two
non-zero elements. However, for a singularity which satisfies Equation (3.3.5) of the
text, these entries vanish and we are left with an equation of the form

JX =0
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and X = (0 00 0) will be the only solution of this equation, provided that J is invertible.
To see that J is indeed invertible, remember that we are assuming that the equilibrium
(R*,S*, L*, P*) is stable. The Jacobian matrix used to determine stability is the same
as the matrix J. Therefore the determinant of J must be non-zero, and hence J is
invertible.

Thus. we have shown that
(R, S, L', P =(0,0,0,0) (C1)
at p*. But u = J6SP/L, so we must also have that u’ = 0.
(ii) Differentiating @:

Differentiating 2 with respect to p, and using (C1) above and Equation (3.3.5) of the

text, we find that

d
% =0
p=p
Thus the value of |Q)| is either locally maximized or locally minimized at p*. The second
order derivative of @ at p* will determine which of these possibilities is the case, but
the expression for this quantity involves the second order derivatives of S, L, and P

(with respect to p), for which we have not been able to obtain analytical expressions.
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Chapter 4

Modelling the Stability of Stx
Lysogens

4.1 Introduction

Like all lambdoid phages, Stx phages are temperate - following adsorption to
an E. coli cell, they are capable of both lytic and lysogenic reproduction. During lytic
reproduction, multiple copies of the infecting virus are constructed, and then released -
together with toxin molecules - through bacterial lysis (cell burst). Lysogenic reproduc-
tion is the mechanism by which the phage DNA (or prophage) becomes incorporated
into the bacterial genome, and is then replicated passively during the E. coli replication
cycle. A lysogen may later enter the lytic cycle through a process known as ‘induction’.

In lambdoid phages, a molecular switching mechanism governs the selection
of cither the lytic or lysogenic pathway, and also determines the rate at which lysogens
undergo induction. Lambda prophages are generally very stable, with an intrinsic in-
duction rate of the order of 10~7 per cell per generation (Aurell et al., 2002; Little et
al., 1999). However when the survival of the bacterial host is threatened by adverse
environmental conditions, such as through starvation or exposure to ultra-violet light,
the rate of lambda prophage induction is known to increase (Ptashne, 2004). It has
been shown that the lysogens of the Stx phages 933W and H19B induce more readily
than lambdoid phages which do not encode Stx toxin, with intrinsic induction rates
of 1.4 x 107 and 5 x 1075 respectively (Livny and Friedman, 2004). Such Stx lyso-
gens will induce at a lower dosage of ‘inducer’ (e.g. UV light) compared with lambda
lysogens, and this phenomenon is unlikely to be directly caused by the presence of
the Stx toxin genes themselves since they are not involved in the switching mechanism.
Therefore 933W and H19B have been described as having ‘hair-trigger’ switches (Livny
and Friedman, 2004), a phrase used to convey the order of magnitude difference in in-

duction sensitivity between these lambdoid Stx phages and the reference bacteriophage
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lambda.

In the genome of an Stx phage, the stz gene is located downstream of the lysis
genes (Unkmeir and Schmidt, 2000). Stx lysogens release Shiga toxins only when the
bacterial cell is lysed, either following the initial infection event or following induction
of a lysogen. Thus the factors regulating the lysis-lysogeny switch play an important
role in the regulation of Shiga-toxin production and release (Tyler et al., 2004). Using
an approach based on the methods of Ackers et al. (1982) and Shea and Ackers (1985),
Santillan and Mackey (2004) developed a mathematical model which addresses the
high level of stability of lambda lysogens. Various differences between the physical
components of lambda and Stx switches have been reported in the literature (e.g.
Koudelka et al., 2004; Tyler et al., 2004). The aim of this chapter is to contribute
to the understanding of the sensitivity of the molecular switch by investigating the
impacts of known differences in the molecular binding affinities and structure of Stx
and lambda phages on switch dynamics and lysogen stability. The findings of this
Chapter were published in Evans et al. (2007).

4.2 Modelling the switch

In lambda lysogens, the concentrations of two regulatory proteins, CI and Cro,
deterinine whether the lysogenic state is maintained or the lytic cycle is initiated. The
protein CI represses induction and lysis, as described below, and is therefore referred
to as ‘the repressor’. The Cl and Cro proteins regulate the expression of two genes, ¢
and cro, in a feedback mechanism determined by the structure of the genome region
associated with the switch (Figure 4.1). The Opg region of the genome is situated
between the genes ¢f and ero, which code for CI and Cro respectively, and contains the
three binding sites Orl, Or2, and Or3. Molecules of CI and Cro in their dimerized
form (denoted Cly and Croy) bind to these sites and in doing so regulate the expression
of the two genes. If a Cly molecule is bound to Ogrl or Og2 then an RNA polymerase
(RNAP) molecule cannot bind to the ¢ro promoter Pg, and so transcription of cro is
blocked. Similarly, if a Cl, or Crog molecule is bound to Or3 then transcription of ¢f
is blocked.

The typical molecular configuration at the right operator (see Figure 4.1) in
a stable lambda lysogen is that Ogl and Og2 are both occupied by Cl; repressor
molecules, while Og3 is unbound (Ptashne, 2004). In this configuration, transcription
of cro is ‘off” but transcription of ¢l is ‘on’. The bound repressor molecules continually
dissociate from the operator sites, but are replaced by other nearby repressors. The
lysogenic state is maintained as long as the concentration of repressor molecules is such

that there will always be sufficient nearby repressor molecules to bind to Ogrl and Og2
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when these sites become vacant. 1f the repressor concentration falls, transcription is
initiated by RN AP binding at the promoter site Pg during a transient period when
Ogrl and Og2 are unbound. Transcription of cro ultimately leads to lysis of the cell
and the release of new phage particles.

An important feature of the regulation of the switch is cooperative binding
between repressor dimers. If a CIy molecule is bound to Ogl then the probability of
a CI, molecule binding to Or2 is increased, i.e. the presence of the Cl molecule at
ORgl has the clfect of increasing the binding affinity between Cly and Og2.

A simple mathematical model of the lambda switch was presented by Ackers et
al (1982). The model is based around the three binding sites at the right operator. Re-
pressor dimers bind to these sites with probabilities determined by the binding affinites
of the system. Dissociation of repressor dimers, and association of repressor monomers
is also allowed for. The binding affinites were calculated from the results of earlier
experimental work (Johnson et al, 1979). At any given time, each binding site is either
unoccupied or bound by a repressor dimer. Thus there are 8 possible binding configu-
rations. The results of the model indicated that cooperative binding between repressor
molecules at Opl and Or2 plays an important role in maintaining the lysogenic state,
and also in allowing lysogens to be easily induced when the repressor concentration
falls.

The static model of Ackers et al (1982) was later used as the basis for a
dynamical model which also included Cro dimers and monomers, the enzyme RNAP,
and the two promoters P’p and Pras (Shea and Ackers, 1985). In this model, at any
given time a binding site may either be unbound or bound by a dimer (CI; or Cros).
Similarly, a promoter may be unbound or bound by an RN AP molecule. There are now
a total of 40 possible binding configurations (bearing in mind that certain configurations
are excluded, e.g. Op3 and Ppas cannot both be occupied simultaneously).

Using « model based on the work of Shea and Ackers (1985), Reinitz and Vais-
nys (1990) explored whethier or not the observed behaviour of the lambda switch could
be accounted for by existing knowledge of the regulatory mechanisms. It was found
that there were inconsistencies between observations and the theory. In particular, the
level of Pr repression predicted by the model would not be sufficient to maintain the
lysogenic state. This implied that an important component of regulatory activity was
missing {rom the model.

It has been proposed (Dodd et al, 2001) that repressor molecules bound to the
left operator of phage lambda contribute to the stability of lambda lysogens. The left
operator region O, contains three binding sites: O1, Or2, and Or3. Dimers of CI and
Cro can bind to the left operator binding sites. Experimental evidence due to Dodd

¢t al (2001) and Ptashne and Gann (2000) indicates that repressor molecules bound
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at the left and right operators can interact cooperatively to form a stable complex, as
illustrated in Figure 4.1.

The model of Santillan and Mackey (2004) extends the Shea and Ackers (1985)
mode] to include the three binding sites of Oy, and cooperative interactions between
repressor dimers at the left and right operators are allowed for. This model is presented
below, since it provides the basis for my own modelling work. This is followed by a
description of the method used to extend the model in order to model Stx lysogen

stability.
4.2.1 The lambda model

The delay differential equation model of Santillan and Mackey (2004) captures the
biochemical processes that govern the lambda molecular switch. It includes the right
and left operators, the promoters I’r and Pgar, the enzyme RN AP, and the proteins

CI and Cro in their monomer and dimer forms. The equations are:

ﬂ%l—] = kzl[OR]f;lw([CIZ]mv [Croo)ry,) + K, [OR]far([C L)y, [Crog)ey)

— (v + )M (4.2.1)
i[—gt—'—} = kerolORIfR(IC La]rpy, [CT02}ry ) = (Va1 + 1) [Moro] (4.2.2)
ACTL s Metle = Gr + IC ] (42.3)
ﬂ%oﬂ = perolMerolres — (Yero + p)[Cror] (4.2.4)

where [M.1] and {M_,,] are the concentration of ¢/ and cro mRNA molecules respec-
tively, and [CI7]| and [Cror] denote the total concentration of Cl and Cro monomers
respectively (here the total number of monomers means the number of free monomers
plus twice the number of dimers). A quasi-steady-state assumption is used to deter-
mine the protein dimer concentrations in terms of the total monomer concentrations
(Santillan and Mackey, 2004). The other symbols which appear in the above equations
are defined in Tables 4.1 and 4.2.

In this model there are 1200 possible molecular configurations altogether,
and for each state ¢ there is an associated binding energy E; which is the amount
of energy which would be required to disassemble the configuration (the formula for
calculating binding energies in phage lambda is a specific case of the formula presented
in Section 4.2.3). Once the energy of each state has been determined, the probability
of each state is calculated with the technique used by Ackers et al. (1982) and Shea
and Ackers (1985):

84



p = c2p(=E /RT)[C L))" [Cro,)*|RN AP)®
I Z

(4.2.5)

where IR is the ideal gas constant and T is the absolute temperature (taken to he 37°C).

The partition [unction Z is given by

Z =" exp(~Ei/RT)[Cly)* [Croy)* [RN AP (4.2.6)

where ¢, J3;. and §; are, respectively, the numbers of C Iy, C'rog, and RN AP molecules
bound to the complex in the i-th state.

The quantities I are used to calculate the f functions. The probability that P
is bound by an RN AP molecule, fr, may be calculated by summing the probabilities
of all the states in which Pg is bound by an RNAP molecule. Similarly, fhas can
be calculated by snmming the probabilities of all the states in which both (i) Pras is
bound by an RN AP molecule and (i) Og2 is bound by a Cl, dimer. Finally, SThar 18
calculated as the sum of the probabilities of all the states in which (i) Prps is bound

by an RN AP’ molecule and (ii) Op2 is not bound by a CI; dimer.

4.2.2 Properties of the model

The model predicts that, for a given set of parameter values, there will either be one
or three equilibrium points. For low values of the CI degradation rate (v.s) there will
generally be a single stable equilibrium corresponding to lysogeny (i.e. the repressor
concentration will be relatively high and the Cro concentration will be relatively low
at this point). 1f 7. is increased sufficiently, two additional equilibria will appear via a
saddle node bifurcation, one of which is stable and corresponds to lysis (low repressor
concentration and high Cro concentration) while the other is unstable. If y.; is increased
even further, then the unstable and lysogenic equilibria will collide and annihilate each
other, leaving only the stable lytic equilibrium,

The steady-states of this model of CI and Cro concentrations are the points
of intersection between two curves, ® = 0 and © = 0, where ® and © are defined as

follows (Santillan and Mackey, 2004):

Pl s e
YA+ [ORI(kS; fiins + Kot SRm)

= (Yer + W{CI7)] (4.2.7)

o(iClr), [Cror), Yer)

and
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O(C 7). [Cror]) = =22 [ORkerofR — (Yero + W)|Cro7] (4.2.8)
TM T U

The symbols which appear in the above equations are defined in Tables 4.1 and 4.2.
The equation O([CTr], [Crop]) = 0 determines a single curve in
(|CI7),[Cror]) space, whereas the equation ®([ClI7],[Cror].y.1) = 0 determines a
family of curves in the same space (one for each value of 7,7, the degradation rate of CI).
Since exogenous (exposure to ultra-violet light) and endogenous (starvation) factors
influence ~er, it is included as an argument of the function ® so that the behaviour of

the system under different degradation rates can be explored.

4.2.3 Generalization of the model

For the purposes of this chapter, the main modelling concerns relate to the functions
Fhars Frass and fr. which use the energies of the molecular binding states to calculate
the probabilities of RNAP molecules binding to the promoters Pgy; and Pg. The
formula for calculating these energies is different for Stx phage compared to lambda,
owing to structural differences between their switch mechanisims. The formula, gen-
eralized from Santillan and Mackey (2004), for calculating the binding energy of each

state 7 is given by:

YL

Ei = Y Y AGL.TH.G)

Y=CIy,Croz v=1

VR
Y .
+ Z Z AGOR" Top (é)
Y =CIl,Croz v=1
vy ~1

Y Y .
+ Z Z AGOLVH JoL. (I)FOL./H ()
Y=Cls,Croy v=1
vp—1

+ Z Z AC()RW“F()RV( I)TH ) puas (1)

Y=CI3,Croy v=I1
Crog Croy Croz  \pCroz
+ Y AGE T TG R (TG ()
X=R,L
min{vy . VR)

+ S AGRLIGE (TSR ()

+ Y. AGREYAPTEIAPG) (4.2.9)
X=RMR,L

where
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1 if the binding site or promoter X exists, and molecule Y
I'%() = is bound to X (in state i)
0 otherwise
In the above formula, v, and vi denote the nnnber of binding sites at the left
and right operators respectively. The terms AG’?,)’:’ AP (X = RM, R.L) represent the
binding cnergy of a RN AP molecule bound to the promoter Px. The terms AG};XU
(X = R, L) represent the binding energy of a molecule of Y to the operator site Oxv.

The terms AG})'
X

oy 1 TEPresent the interaction energy between two Y molecules bound

to the operator sites Oxv and Oyxwvrr. The terms AGS;‘?B represent the interaction
energy between 3 Cros molecules bound to Ox1, Ox2, and Ox3. This notation is
made more explicit in Table 4.3, which contains a list of the binding energies used in
the model. All of these cnergies have been determined experimentally for phage lambda
(Santillan and Mackey, 2004). The interaction energy between a C'I, bound to Ogv and
a C'Iy bound to Opp (denoted by AGRL) is also included in the model, although this

quantity has not yet been measured experimentally and must therefore be estimated.

4.3 Phage scenarios

There are known differences between the switches of certain Stx phages and phage
lambda. The analysis in this chapter compares the stability of phage lambda lysogens
with four different Stx phage “scenarios” (Stx 1, Stx 2, Stx 3, and Stx 4) as shown in
Table 4.4. The scenarios are obtained by varying the number of operator sites in the
left and right operators, and by varying the value of the parameter AG'gffz.

For phage lambda we have vg = 3 and v = 3, while for the Stx phage 933W
we have vg = 3 but v, = 2 (Tyler et al., 2004). So for Stx 1, vy, is set equal to 2, so
that the effect on lysogen stability of removing Or3 can be examined.

It has been speculated that Or3 does not function as an active binding site in
some Stx phages (H. Allison, personal communication). For Stx 2 v, vg are set equal
to 3 and 2 respectively to see the effect of removing Og3 in isolation, and then for Stx
3 both operator sites are absent (i.e. v, = 2, vgp = 2) to see the combined effect of
removing both operator sites.

The 933W phage is also known to have different relative binding affinities
at the O and Op operators, compared to phage lambda (Koudelka et al., 2004). In
particular in most lammhdoid phages, cooperative binding between repressors at Ogl
and Op2 enables repressor molecules to bind to these two sites at almost identical
concentrations. However, in 933W a 3- to 4-fold higher concentration is needed for
repressor to bind to Or2 compared to Ol (Koudelka et al., 2004). Thus Stx 4 has
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been subdivided into 4 scenarios ((i), (ii). (iii), (iv)). In Stx 4(i), the value of AGgfz is
set equal to the value for phage lambda (i.e. -10.5 keal /M), while in Stx (ii), (iii), and
(iv) the absolute value of this parameter is progressively lowered, to reflect the weaker
binding affinity in 933W. In order to model the known structure of 933W as closely as
possible, the O3 site is removed from the model for Stx 4.

For each scenario, Equation (3) is used (with the appropriate values of v, and
vRr) to calculate the binding energies of each possible molecular configuration. In the
absence of experimentally determined parameter values for Stx phage, the parameter
values used are those given in Santillan and Mackey (2004) for phage lambda, except

where otherwise indicated.

4.4 Results
4.4.1 Stx Phage scenarios 1, 2, and 3

Figure 4.2 shows the curves © = 0 and ¢ = 0 for both lambda and Stx 1. Both
phages have a steady state corresponding to lysogeny (shown in C and F), but notice
that the concentration of Clr at the lysogenic equilibrium is greater in Stx1 than in
lambda. Figure 4.2E reveals that the removal of O;3 in Stx 1 has introduced two
additional steady-states, one of which is stable and corresponds to lysis. However,
the overall effect of the absence of O3 on the stability of the lysogenic equilibrium is
small. This is not surprising because although Cls molecules bound at O3 and Og3
interact cooperatively (with binding affinity AGRy) and thus increase the strength with
which they are bound to their respective binding sites, it is usually the case that in a
Jambda lysogen the O3 site is unbound (Ptashne, 2004), in which case this cooperative
interaction is not a factor in lysogen stability.

With 7., = 0, the phages lambda, Stx 2, and Stx 3 are all lysogenically
monostable, but for other values of v, these phages may exhibit different properties.
Figurc 4.3 shows the curves © = 0 and ® = 0 for lambda, Stx 2, and Stx 3 when vy is
et to 0.061 min~!; Stx 2 is monostable with a single lysogenic equilibrium (B and E),
while lambda is clearly bistable. This indicates that the lack of an Og3 binding site in
Six 2 enhances the stability of its lysogens. Stx 3 is bistable for this value of v, but
only just, and comparison of Figures B and C shows that the presence or absence of
the 01,3 site has only a minor impact on the stability properties of the system.

The finding that the absence of Og3 in Stx 2 greatly increases lysogen stability
is not surprising, because in phage lambda a Cl; molecule can bind to Op3 in order to
repress the ¢l gene and prevent the repressor concentration fromn becoming too high.
A large excess of Cly molecules would reduce the sensitivity of the lysogen to changes

in endogenons and exogenous environmental factors, since a high vy.; degradation rate
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would then be needed in order to flip the switch from lysogenic to lytic growth. If Og3
is missing, then no matter how high the concentration of Cly becomes. Cl production
will not be switched off and so the switch sensitivity to environmental factors will be

reduced.

4.4.2 Stx Phage scenario 4

A more detailed analysis is presented for Stx 4, which is designed to represent the
structure (lack of a third Op binding site) and the binding affinities (reatively weak
binding between repressor and Og2) of 933W. We begin looking at the stability struc-
ture of the system by examining the solutions to the equilibrium equations. Numerical
measures of the stability of the lysogenic equilibria are then presented for different
values of 7y.;, and compare the results for Stx 4 and lambda.

Figure 4.4 shows the solutions of the equilibrium equations (with v.; = 0) for
lambda, Stx 4(i). and Stx 4(iii) (cf Table 4.4). The graphs in A and B show that there
is very little difference between the solutions for lambda and Stx 4(i), although Stx
4(i) is actually bistable while lambda is lysogenically monostable. On the other hand,
Stx 4(iii) is clearly bistable. The three graphs indicate that while the absence of the
0.3 site in Stx 4(i) does not make much difference, the weaker binding affinity between
repressor and Qg2 in Stx 4(iii) has a significant impact on the stability structure of the
systemnl.

Figure 4.5 shows projections in ({CIr], [C'ror]) space for lambda and Stx 4(iii),
with ~.;=0.20 min~!, for different initial protein concentrations. These projections are
obtained by numerically solving the delay differential equations comprising the model.
The graphs illustrate that while lambda is bistable at this value of ., Stx 4(iii) is
lytically monostable. So it is clear that a lower value of . is needed to eliminate the
lvsogenic equilibrium in Stx 4(iii) than in lambda. This further illustrates the lower
lysogen stability of Stx 4(iii) compared to lambda.

The way in which the values of AGS?z and ~.s determine the stability structure
of Stx 4 arc illustrated in the bifurcation diagram in Figure 4.6. For the range of AGS;’Q
values considered, there is no region of lysogenic monostability at all, and as the absolute
value of this parameter decreases the minimum value of 7. required to eliminate the
lysogenic equilibrium decreases, implying that lysogen stability also decreases.

So far only the presence or absence of lytic and lysogenic equilibria has been
considered. The stability of the lysogenic equilibria were examined by determining
the leading eigenvalues. and also by numerical determination of the concentration of
Cro and the likelihood of repression of the promoter Pr. Use of these three methods

lent robustness to the conclusions drawn from the results. The first of these is a
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standard mathematical method for stability analysis, and the second and third allow
hiological interpretation of the dynamics of the system. The quantity Pg-repression is
the probability, given the concentrations of Cly and Cror, that transcription of the cro
gene is blocked; a lower value of Pg-repression means that induction of the lytic cycle
is more likely to occur. The three methods are illustrated in Figure 4.7.

The graphs in Figure 4.7 show that the three methods of measuring lysogen
stability all indicate that in general lysogen stability decreases as «yo increases. It is
also clear that the lysogens of Stx 4(iv), which has the lowest absolute value of AGgffz,
are generally the least stable for a given value of 4.;. Lysogen stability increases as
AGS:& is increased, and there is almost no difference between the stability of Stx 4(i)
and lambda lysogens (which have the same value of AGSII_&, ie. -10.5 kcal / M).

However, the eigenvalue graph in Figure 4.7B reveals an interesting prediction
of the model. namely that the stability of Stx 4 and lambda lysogens as measured by
the leading cigenvalue initially increases as v.s is increased from zero up to the value of
Yero (0.016 min™ 1. The eigenvalue then remains roughly constant (at a value of around
-(1t + Tero)s 16 -0.036) as ¢ increases further, until eventually the leading eigenvalue
begins to approach zero. The initial increase in stability may enable the phage to bide
its time before responding to worsening environmental conditions. A small increase
in ~; may mean that conditions for survival of bacteria are poor, and therefore lysis
of a host cell could endanger the bacterial population. Hence an increase in lysogen
stability may be prudent for small increases in .7, with initiation of the lytic cycle
only occurring once it is clear that the host cell is in severe peril.

When the cigenvalues are calculated for the ordinary differential equation
model obtained by setting 7.7 and T, equal to zero (data not shown), it is found that
these arc almost identical to the delay model eigenvalues, both for lambda and the
four Stx scenarios. This indicates that these delays do not significantly affect lysogen
stability; it also allows us to discuss the above behaviour of the leading eigenvalue using
the model without delay.

For this model, the diagonal elements of the Jacobian are: —(ypr+u) = —0.14,
(s + 1) = ~014 =(qer + 1) = —0.02 + ¢, and ~(Yero + 4) = —0.036. Many of
the non-diagonal elements are exactly zero; moreover, the other elements are also often
sufficiently small that it is possible to regard the eigenvalues as perturbatious of the
above diagonal elements. Thus for 7¢; = 0, the dominant eigenvalue is a perturbation
of —ju1 as Yer increases, the eigenvalue close to —(7,; + p) remains dominant until it
becomes wore negative than —(Yero + p) which then dominates. Subsequently non-
diagonal clements of the Jacobian approach this element in size and the dominant
cigenvalue approaches zero. This final procedure begins consistently earlier as we move

through the scenarios from lambda/Stx4(1) to Stx4(iv).
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4.5 Discussion

The Stx phages 933W and H19B have been described as having ‘hair-trigger’ switches,
beeause of their greater propensity for lysogen induction compared to phage lambda. It
has been speculated that one of the reasons for this in 933W is the lower binding energy
between O g2 and repressor, since this results in tighter regulation of the repressor gene
(Koudelka et al., 2004). i.e. lower levels of repressor concentration in Stx lysogens. The
results presented in this chapter support this view, and indicate that a lower binding
affinity between repressor molecules and the Or2 binding site will result in a reduction
of lysogen stability.

The relatively rapid rise in the observed prevalence of Stx genes since their
initial discovery in 1982 could be due in part to the hair-trigger nature of the molecular
switch and the relative instability of Stx lysogens. Thus, the lysogenic state in which
the phages are benignly replicated in conjunction with the rest of the bacterial genome
is less abundant and the switch to lysis more frequent, resulting in propagation and
dissemination of Stx phages amongst host populations. Rounds of integration into bac-
terial genomes and subsequent induction to the lytic cycle would dramatically increase
the opportunities for genetic recombination, including the acquisition and spread of
genes that promote the ability of the bacterial host to colonise the intestine (Dziva
et al. 2004). Furthermore, the switch is also involved in immunity to multiple phage
infection. and it may be that the hair-trigger switch also promotes multiple infections
(Allison et al., 2003) providing the opportunity for genetic recombination within single
bacterial cells, which would contribute further to the ecvolution of the heterogeneity
that has been documented in Stx phages.

While it is known that the strength of the binding affinity between Op2 and
repressor is relatively low in 933W, the numerical values of the binding affinities between
binding sites and regulatory proteins have not been experimentally measured for any
Stx phage. Obtaining these values would enable a more accurate comparison of lambda
and Stx lysogen stability. Knowledge of the Stx binding affinities would also help to
cstablish whether the relative strengths of the binding affinities are.the main cause of
Jower Stx lysogen stability, or whether other factors have a significant impact as well.

Lysogens of phage lambda are immune to superinfection by other lambda
phages, and a single lysogen encodes only one prophage. However, lysogens of the
Stx phage $24p5 are not immune to superinfection by this phage, and the existence
of multiple lyvsogens (i.e. lysogens whose genomes encode more than one prophage) of
this phage has been demonstrated; it is speculated that the presence of multiple stz
genes 1ay lead to greater toxin production and virulence (Fogg et al, 2007). Phage

$21 3 encodes a gene which is similar to the anti-repressor gene of the phage P22; if the
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corresponding gene product is indeed a functional anti-repressor in ®245 lysogens, then
it is likely to play a role in enabling superinfection of lysogens (Fogg et al, 2007). The
presence of an anti-repressor protein may also reduce the stability of single and multiple
lvsogens by inactivating molecules of the CI repressor and so raising the probability of
cro being expressed. However, the mechanism by which this protein operates is not yet
known. The extent to which other Stx phages are immune to superinfection, and the
implications of superinfection immunity for Stx lysogen stability and toxin release, are
important areas for future research.

While there are many instances amongst bacterial pathogens in which disease-
causing traits have originated from bacteriophage infection (for example Vibrio cholerae
(Waldor et al., 1996) and Neisseria meningitidis (Bille et al., 2005), and see Allison
(2007) for a review), shigatoxigenic E. coli are the only pathogens in which virulence has
heen demonstrated to be associated with the phage induction cycle. There are neverthe-
less many pathogenicity phenomena which are unexplained, and given the widespread
distribution of lysogenic phages amongst bacterial pathogens, it seems likely that con-
comitant switching on of the phage lytic cycle and the expression of genes involved in
promotion of discase is not restricted to the well-studied shigatoxigenic E. coli strains.

In this chapter it has been shown how the Santillan and Mackey (2004) phage
Jlambda model can be extended to deal with different phage characteristics. The ap-
proach used here may thus provide the basis for future modelling of temperate phages,
as more is discovered about the characteristics of different phage strains - such as the
ability to form stable complexes as in phage lambda, and the magnitude of the binding

energics involved in such complexes.
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Symbol Description
Cl1, Cro Regulatory proteins
cl, cro The genes which code for CI and Cro respectively
M, Moy mRNA transcripts of ¢f and cro respectively
Prai The promoter for ¢l
P The promoter for cro
Og The right operator
Oxl.0x2.0x3 | The binding sites at the right operator
OL The left operator
0,1.0.2.0.,3 | The binding sites at the left operator
Y Probability for a RNAP molecule to be bound to Pryy
without a Cly molecule bound to Og2
I ;’M ( Probability for a RNAP molecule to be bound to Pras
with a Cl; molecule bound to Ogr2
[r Probability for a RNAP molecule to be bound to Pg
© =0,9 =0 | Model equilibrium equations

Table 4.1: Symbols used in the model representation of the switch.
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Parameter | Description Estimated value
Pel CI translation initiation rate 0.09 min~!
Pero Cro translation initiation rate 3.2 min~!
M Common degradation rate of M. and M., 0.12 min—!

7 Bacterial growth rate 2.0 x 1072 min~!
" Transcription initiation rate at Pgras 0.35 min-!
without a CI; molecule bound to Og2
kf ! Transeription initiation rate at Pras 4.29 min~!
with a Cl; molecule bound to Og2
kero Transcription initiation rate at Pgp 2.76 min~!
Tel Time delay owing to ClI translation 0.24 min
| Tero Time delay owing to Cro translation 6.6 x 1072 min

Table 4.2: Description of parameters with estimated values for phage lambda (source:

Santillan and Mackey, 2004).
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Binding energy | Estimated value Binding energy | Estimated value
AGE)?] -12.5 keal / mol AGG -11.5 keal / mol
AGS;‘J -10.5 kecal / mol AGS% -9.7 keal / mol
AGS;:x -9.5 keal / mol AGgf%; -9.7 keal / mol
AGEH, -2.7 keal / mol AGS’%Z -2.7 keal / mol
AGS 23 -2.9 keal / mol AGS%%23 -2.9 keal / mol
AG%’,:;" -12.0 keal / mol AGO:DI2 -12.0 kecal / mol
AGSTS -10.8 keal / mol AGSZ‘;" -10.8 kcal / mol
AGS'R"; -13.4 keal / mol AGS’;‘? -13.4 keal / mol
AGY -1.0 kcal / mol AGG% -1.0 keal / mol
A(;g";‘,’z'-’ﬁ -0.6 kcal / mol AGS:?& -0.6 keal / mol
AGH By -0.9 keal / mol AGgmlzzs -0.9 keal / mol
AG";,‘“’“) -12.5 keal / mol P,’J?MAP -11.3 keal / mol
AG;‘Z;’?\‘?P -11.5 kecal / mol AGpp -3.1 kecal / mol

Table 4.3: Table of binding energies with estimated values for phage lambda (source:
Santillan and Mackey, 2004).



Phage Number of Number of | Binding Total
scenario | left operator | right operator | energy of number of
binding binding Cl; to Ogr2, | molecular
sites, v sites, vi AGgfj2 binding
(kcal / Mol) states
Lambda 3 3 -10.5 1200
Stx 1 2 3 -10.5 400
Stx 2 3 2 -10.5 600
Stx 3 2 2 -10.5 200
Stx 4 p 3 (i) -10.5 400
(ii) -10
(iii) -9
(iv) -8

Table 4.4: The lambda and Stx phage scenarios. Stx phages differ from lambda either
in the numbers of binding sites in the left and right operator regions (O, and Op), or
in the strength of the binding energy between Cla molecules and the second binding
site in Op. or both. Note that Stx 1 and Stx 4(i) are actually identical, but are treated
as separate in order to make the analysis in the text clearer.
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Figure 4.1: The region of lambda DNA which comprises the molecular switch between
lvsis and lysogeny. It includes the left and right operators, which are regions of DNA
\;rlxic}l can regulate gene transcription. There are three binding sites at the right oper-
ator (Opl, Ogr2, and Og3) and another three binding sites at the left operator (O1,
0.2, and O13). The promoters for the genes ¢/ and cro are labelled Prys and Pp
respectively. Repressor molecules are shown bound at all six operator sites. The dia-
gram shows how adjacent repressor molecules interact cooperatively, so as to increase
the stability of the molecular configuration. In the configuration shown, transcription
of both ¢l and cro is blocked. (After Ptashne, 2004).
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Figure 4.2: Plots of the equilibrium equations © = 0 (thick black line) and ¢ = 0 (with
Ye1=0 min~1) for lambda (A, B, and C) and Stx 1 (D, E, and F). The graphs in B,
C, E, and F show close ups of the regions where the curves intersect. These points of
intersection correspond to the steady states of the models.

98



1.4e-06

3¢-06
S 2e-06 A o
s = 1e-06
T B
3 3
£ 1e-06 - =
6607 -
1e-07 2¢-07 le-08 2¢-08 3e-08
[CIr](M) [CIr](M)
1.4e-06 1
3e-06
S S 1.3e-06 A E
= 2¢-06 - B <
~
§ §
S} Q
1e-06 - == 1.2e-06 - )
le-07 2607 le-08 2e-08 3e-08
[CIr)(M) [CIT)(M)
1.4¢-06 \
3e-06
< G.S 1.3¢-06 - E
< 2¢-06 =
S 3
= o 4
16-06 - 1.2e-06
le-07 2¢-07 le-08 2¢-08 3e-08
[CIT)(M) [CI7](M)

Figure 4.3: Plots of the equilibrinm equations © = 0 (thick black line) and & = 0 (with
Y01=0.061 min~!) for lambda (A), Stx 2 (B), and Stx 3 (C). The graphs in D, E, and
F show close-ups of the regions where the lytic and unstable equilibria first appear via

a saddle node bifurcation
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Figure 4.4: Plots of the equilibrium equations © = 0 (thick black line) and ¢ = 0 (with
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100



1.5 v v
« - A
N\
1 “ N
S RN Pr
L T ‘
('3 \
205} | ) - —
T O e
§ \ —r
0 1 3 4 5 6
[CIT)(M) <107

[Cror](M)

Figure 4.5: Projections in (CI7, Cror) space of the model trajectories for lambda (A)
and Stx 4(iii) (B), with 4.7 = 0.20, obtained by numerically solving the model delay
differential equations. Filled circles indicate stable equilibria, while the empty circle in
A represents an unstable equilibrium.
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Chapter 5

Modelling lysogen stability under
varying environmental conditions

5.1 Introduction

During induction of an Stx lysogen, toxins will be synthesized and released. There-
fore, the level of stability of Stx lysogens affects the rate at which toxins are released.
In the previous chapter, the influence of the characteristics of Stx phages on the sta-
bility of their lysogens was considered, and this chapter examines the effect of some
environmental conditions on stability.

Environmental factors. such as the presence ol ultra-violet light (Ptashne, 2004),
may directly influence the survival of the host. Other factors have an impact on molec-
ular processes that determine host growth rate, which in turn will influence the rate at
which prophages initiate induction.

Host growth rate is a measure of the combined effects of environmental influences
and is inherently determined by the response to available resources (nutrients) which
may be temperature dependent. There remains a sparcity of published experimental
data that describes in detail the temperature dependent growth responses of phage
hosts to individual resources; although it is well known that growth rate exhibits an
asviuptotic response to increasing concentration of a single resource (Monod, 1949;
Powell, 1967).

In this chapter, the impact of nutrient level and temperature on host growth rate,
and hence lysogen stability, are considered seperately. Thus, in modelling the impact
of environmental conditions on lysogen stability, the approach taken is to consider (a)
variable resource concentration (nutrient) at constant temperature, and (b) variable
temperature at a constant resouce level. |

The Santillan and Mackey (2004) model (Chapter 4) is used to explore the effects

of temperature and resources on lysogen stability. This model includes a term which
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represents the concentration of operator sites, Og, and this depends on the number
of genome equivalents present in the cell. The average number of genome equivalents
per cell, G, is dependent on the nutrient level present in the environment (Bremer
and Dennis, 1996). Note that G is essentially unaffected by changes in temperature
(Bremer and Dennis, 1996), and the reasons for this will be addressed later on. Changes
in temperature and nutrient level also affect the calculation of the probabilities of
different binding configurations at the molecular switch, as described in Section 5.1.1.

In Section 5.2 we present a variation of the proof of a formula due to Powell (1956)
which can be used to determine the age distribution of bacterial cells in batch culture.
This formula was used by Cooper and Helmstetter (1968) to obtain an expression for
the average number of genome equivalents per cell G for different host growth rates,
and hence different nutrient levels; few details were provided by these authors, and so
we provide a summary of the important steps of the derivation.

The stability of lysogens containing multiple prophages is also considered in this
chapter. It has been shown that the Stx phage ®24 is able to form multiple lysogens
with its host (Allison et al, 2003); the presence of multiple Stx lysogens may increase the
rate at which toxins are released into the environment, leading to increased virulence
(Fogg et al, 2007).

5.1.1 The modelling approach

One of the most widely studied strains of E. coli is strain B (Schneider et al, 2002).
The strain known as E. coli B/r is a mutant of E. coli B which is resistant to ultra-
violet light (Adler and Haskins, 1960). Bremer and Dennis (1996) presented data
on the amounts of DNA, RNA and protein molecules present in the E. coli strain
B/r at different nutrient levels and also at different temperatures. These data can
he incorporated into the Santillan and Mackey (2004) model of lysogen stability, to
examine the effeet that changes in nutrient levels and temperature can have on lysogen
stability, as described below. The model in question is a delay differential equation
(DDE) model. However, since it was found in Chapter 4 that the ordinary differential
equation (ODE) version of the model (obtained by replacing the delayed variables
with their non-delayed counterparts) produced almost identical eigenvalues to the DDE
model at every equilibrinin considered, here we restrict our attention to the ODE version

in order to simplify the process of calculating eigenvalues. The ODE model is given

below:



d[M,;]

= KLORISfp ((CLa], [Croa)) + K2 [OR] [far ([C L), [Cron))

dt
= (vm + ) [Mer] (5.1.1)
1 J\[(‘TU ,
[¢ [ (H ] —_ kf(‘]'()[()R]fR([CIQ]. [C?']-())]) — (’7}\, + /1)[]\1”0] (512)
I[C Iy
idt——l—] = patlder] = (ver + WIC 7] (5.1.3)
{|[Crop
([—d’t_I] = /)(71-0[1\’1(-1‘0] - ('70ro + /L)[C‘I‘()T] (5‘1.4)

Au explanation of the terms in the above model can be found in Section 4.2.1.

The adjustments which must be made to the model depend on whether changes in
nutrient level or temperature are being modelled. The nutrient level data is presented in
Table 5.1. The numbers 1 (lowest) to 5 (highest) are used as proxies to indicate nutrient
level, since the actual levels are not included in the published data. The function shown
in Figure 5.1 (a) is used as a hypothetical relationship between nutrient level and E. coli
growth rate. Note that the growth rate (i), the average number of genome equivalents
per cell (G), and the amount of active RNAP in each cell all increase as the nutrient
level increases (with the temperature held constant at 37°C).

Thus, for variations in the nutrient level, the ni..del parameters which arc affected
are the quantities p¢ and [Og| (which can be obtained from G, since the number of
operator regions is assumed to be equal to number of genome equivalents per cell),
and also the functions f,,, fias. and fr (see Section 4.2.1 for a description of these
functions). The three functions are affected because of the change in [RNAP).

The temperature data is given in Table 5.2. This data was obtained for E. coli in
a “glucose minimal medinm” (Bremer and Dennis, 1996); for modelling purposes it is
assumed that this corresponds to the lowest nutrient level (level 1) in Table 5.1. As the
temperature is increased from 20°C to 40°C (with the nutrient level held constant at
a non-limiting level), the growth rate increases. However, the replication patterns are
identical at different temperatures (Bremer and Dennis, 1996), i.e. the ratios C/r and
/7 remain constant as the temperature changes. Thus the average number of genome
equivalents per cell G (as given by (5.2.9)), and hence the value of [Og), do not change
with temperature. This contrasts with the nutrient level data, where the replication
pattern is altered when the nutrient level increases.

So for variations in temperature, the terms affected are p and the functions f},,,
Sy and fr. The three functions are affected because of the change in absolute
temperature, 7. The values of the parameters ¢, and RN AP are assumed to be fixed

at the values given in Table 5.1 for nutrient level 1.

Other model parameters which are not mentioned above are assumed to be constant

106



Parameter Symbol Units 1 2 3 4 5
Growth rate u min~" 0.007 | 0.012 | 0.017 | 0.023 | 0.029

Doubling time T nmin 100 60 40 30 24

C period C min 67 50 45 43 42

D period D min 30 27 25 24 23
DNA/cell G genome equiv./cell | 1.6 1.8 23 3.0 3.8
Active RNAP/cell | RNAP RNAP/cell 205 503 0992 | 1929 | 3298

Table 5.1: Paramecter values for E. coli B/r at different nutrient levels. There are 5
nutrient levels, labelled 1 (lowest) to 5 (highest). The values of G are obtained using
equation (5.2.9) in the text. Source: Bremer and Dennis (1996).

Parameter | Symbol | Units | 20°C 25°C 30°C | 35°C | 40°C
Growth rate 7 min~! | 0.00475 | 0.00754 |{ 0.0106 | 0.0137 | 0.0157

Table 5.2: Growth rates of E. coli B/r at different temperatures. Source: Bremer and
Dennis (1996).

with respect to nutrient level and temperature. Parameters which do not feature in
Tables 5.1 and 5.2 are assumed to be fixed at the values given by Santillan and Mackey
(2004). In particular, it is assumed that the rate s of transcription and translation
are unatfected by changes in mutrient level and temperature. In reality it is likely
that there would be an impact on these rates, and hence on the time delays due to
transcription and translation. However, in the previous chapter it was found that the
location and stability of the equilibria were not sensitive to changes in these time delays
(by comparing the eigenvzﬂues from the DDE aud ODE versions of the model, which

were found to be almost identical), and so in this sense the assumption is justified.

5.2 Derivation of the average number of genome equiva-
lents per cell

The term “batch culture® is used to describe a bacterial population growing in a
closed svstem. There is an initial supply of nutrients which is not replenished, and so
the population will reach its maximum level when a nutrient which is needed for growth
is exhausted, i.e. becomes growth-limiting. Powell (1956) showed that the spread of
ages within a population of bacteria in batch culture is determined by the frequency

function ¢. given by:
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pla) = 2we ™ (a < A)
= 0 (a > A)

where o represents age, A is the age at which cells divide (a fixed constant), and
v = 1In2/A. The above function can be derived (in a somewhat novel way) as follows.
Let N(a,t) be the number of cells aged a at time ¢t. and let Np(t) be the total

munher of cells at time f. We have

N(0,0)da = Nr(0)¢(0)da

When the cells reach age ¢ (a < A), we have

N(a.a)da = N(0,0)da = Nr(0)¢(0)da
and

N{a,a) = Nr(0)o(0)

)= R~ Nr )

The bacterial population grows exponentially, i.e. Nr(t) = Np(0)e!, so we can

write

_ Nr(0)¢(0)da

ola) = = ¢(0)e™"" a< A (5.2.1)

Nr(0)eeda -

Since [~ ¢(a)da = 104 ¢(a)da = 1, the ahove expression implies that

A
d)(())/ e da =1
0

and so

¢_E/Q-)—(l —ev) =1 (52.2)

Note that the population growth rate is equal to ¥ Np(t), and therefore

yNg(t)

N(A, )
Nr(t)p(A)
Nr(t)o(0)e ¥4

It
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Hence

v = ¢(0)e (5.2.3)

From (5.2.2) and (5.2.3), we have

(,‘l/A(l _ ({—UA) =1
— el//\ — 1 — 1
= "1=2

This states firstly that v = 4In2, and secondly that 2v = ¢(0) (using (5.2.3)). Incor-

porating both of these relationships into (5.2.1) yields

pla) = v2i°%
1 l_u
= = ks
A(ln2)2

If A=1 then the age distribution function reduces to

#(a) = (In2) 2@ (0<a<1) (5.2.4)

Note that jnl ¢o(a)da = 1. The average number of genome equivalents per cell can

now be calenlated as

_ »1
G = /0 #(a)G(a) du (5.2.5)

where G is a function defined such that G(a) gives the number of genome equivalents
in a cell whose age is a. Cooper and Helmstetter (1968) obtained an expression for G
by dividing the bacterial division cycle into n intervals, such that within each interval
the number of replication points operating is constant, and hence the rate of DNA

syvnthesis is constant. Then the number of genome equivalents at age a is given by:

G(a) = Fika+ G(0) 0<a<sy
= Fka +atk(F) - F) + G(0) ay <a<ag
= Fjka + a1k(Fy — F3) + agk(F, — F3) + G(0) a3 < a<ag
n—1
= Fuka+ k) ak(F, — Fiy1) + G(0) an-1<a<ay,
i=|
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where a; is the age of the cell at the end of the " interval, k is the rate of DNA
svnthesis per replication point, and F is the number of replication points in the it
interval.

First note that putting ¢ = 1 in (5.2.6), and replacing G(1) with 2G(0), yields

n—1
G(0) = Fuk + kY ai(F, - Fip) (5.2.6)

i=1

Now. substituting (5.2.4) and (5.2.6) into (5.2.5), we obtain:

G = 2In2 LZF;/ 27 % da
i=1 Q;.-1
n J-l e
+ RN alF F,~,+])/ 27%a
J=2i=1 71

+

/0 2"‘G(O)da] (5.2.7)

The integrals in the first line of the above expression may be evaluated using integration

by parts. For an integer i, where 1 <1 < n, we have:

“ - 1 —a; - —a; 1 —ai— —Q;
/ 2 "adazm(ai_ﬂ G-l g2 )+W(2 1—27%)

ay 1

The integrals in the second line of (5.2.7) are evaluated using simple integration to give:

a; 1
2-—(ld — — (¢ Q.1 _ 904
/ T e (2 )

Evaluating the integral in the third line of (5.2.7) (with a, = 1), and using (5.2.6), we

obtain:

G(0)

2In2

Fok + kY ai(Fi — Fiyy)
2In2

/0 ] 279G(0)da =

After evaluating the above integrals, we find that all of the terms from the second

and third lines of (5.2.7) cancel out. Most, but not all, of the terms from the first line

also cancel, and we are left with:
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8 : . n-1 . ‘ ‘
=1 |2F - Fat 21: 20— (F ) — F) (5.2.8)

G
For n = 3. it is possible to re-write G in terms of C, D and 7 (Cooper and Helmstet-
ter. 1968), where 7 is the population doubling time, (' is the time required to replicate
the clhiromosome, and D is the time period between termination of a round of replica-
tion and the following cell division. Let 2 be the number of cell divisions which occur
during a round of replication plus 1. The ages a; and as divide the division cycle into
3 intervals, and represent either initiation or termination of a round of replication. 1f
ay corresponds Lo initiation t,hg.\n ay corresponds to Lermination, and vice versa; which
of these is the case depends on the particular pattern of replication. The age of a cell
at the time of replication intiation is (1 — D)/7. and the age of a cell at replication
termination is [x7 — (C + D)]/7. So, for example, if a; occurs at the end of a round
of replication then we must have ay = [x7 — (C + D)]/7. In this case ap must occur
at the initiation of replication, and therefore ay = (1 — D)/7. Cooper and Helmstetter
considered a number of different replication patterns with n=3; they found by substi-
tuting for a; and ay in (5.2.8), and using the appropriate values of F}, F, and F3, that
the following expression was obtained in each case:

~ T N/r T =
G = g 200 - 2P/ } (5.2.9)

The above expression was used by Bremer and Dennis (1996) to calculate the value of

G} in relation to nutrient level.
5.3 Results and Discussion

5.3.1 Varying the nutrient level: phage lambda

At vach nutrient level examined, if the value of 4. is low (i.e. within the range
0 < 10 < 0.1) then the values of dfr/0[CIr] and dfp/d[Cror| are very small (at
the lysogenic equilibrium). If we assume that they are zero, then the Jacobian at the

lvsogenic equilibrium has the following form:

M 0 [()R](kg,w* + ki at) [()R](k(‘_,’_,y" +k5;2%)
J = 0 —YM = p 0 0
Vel 0 ~Yel = I 0
0 Vero 0 —Yero — M

where
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o rd
¥ Of ras

v o[CIr] [Clg]=[Cly}* [Cror}=[Cror]
o= Ofhu
NCIicr)=(c1r)- [Crop)=iCrog]*
R
OlCror] |\ 1p)=(C11) (Croz)=[Cror)*
: O f

d|Cror] [Cir}=(CIp]* [Cror)=[Crog]*

The eigenvalues of the above matrix are given by:

(-t = 1) (5:3.1)

( “tero /l‘) (532)
el YAl \/’yf, = %M + i + AORver (kIyw* + ke*)

—H- T + 5 (5.3.3)

Note that y* and z* do not appear in these expressions. For ~. = 0, the leading
eigenvalue is given by Equation 5.3.3 (with the square root term added rather than
subtracted) for all nmitrient levels. At each nutrient level, the value of this eigenvalue
depends only on p and the quantity [Og](k;w*+k%,2°) (all the other parameter values
are fixed with respect to nutrient level). As the nutrient level increases there is not
much variation in the latter quantity, and so there is a steady increase in stability which
is iainly due to the increase in g. The increase in stability is illustrated by the v.; = 0
curve in Figure 5.1 (b).

For both v.; = 0.05 and v,y = 0.10, the leading eigenvalue is given by (—vero — #).
So at higher nutrient levels, and hence higher growth rates, there is a greater degree of
stability, as shown in Figure 5.1 (b) (note that the leading eigenvalue plots for ~y.; = 0.05
and =y = 0.10 overlap).

For higher values of v,y (i.e. v > 0.1) the values of 8fr/0CIy and dfp/0Cror
at the lysogenic equilibrium are not negligible. Therefore the eigenvalue expressions
derived above, no longer apply. As shown in Figure 5.1 (b), there is an initial decrease
in stability as the nutrient level is increased. Once the nutrient level passes increases
beyond a certain point (i.e. nutrient level 6, in the case of v.; = 0.37), the stability
begins to increase slightly. On the basis of numerical experiments, this behaviour
can be explained in terms of two factors. An increase in nutrient level and hence
growth rate tends to increase lysogen stability, as in the low v.s cases. On the other

hand. as the nutrient level increases the derivatives of the functions fi,,, fir, and fr
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with respeet to CIt and Crop also change. In particular, on the basis of numerical
experiments (results not shown), there was an increase in the absolute value of 7)%11“;
as g increased, and this tends to reduce stability; changes in the values of the other
partial derivatives were found to have a much lower impact on stability. Whether there
is an increase or decrease in stability when moving from one nutrient level to another is
largely determined by which of the two factors dominates. At the higher nutrient levels,
the effect of higher growth rate dominates, and so there is an increase in stability.

In order to illustrate the behaviour of the eigeuvalues more clearly, Figure 5.2 il-
lustrates all four eigenvalues for phage lambda over the five nutrient levels, for differ-
ent values of 1.;. Notice that the eigenvalue(—~.., — i) is the leading eigenvalue for
0 < v < 0.30.
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Figure 5.1: Modelling changes in lysogen stability in response to changes in the nu-
trient level. (a) The example relationship between nutrient level and E. coli growth
rate which has been adopted for modelling purposes. (b) Leading eigenvalues of the
lvsogenic equilibrium versus nutrient level (phage lambda). (¢) Leading eigenvalues of

the lysogenic equilibrium versus nutrient level (Stx3). The curves are labelled with the
appropriate value of v.;.
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growth rate for different values of the CI degradation rate, 4. (phage lambda only).
(a) ver = 0.0. (b) 71 = 0.05. (¢) ver = 0.10. (d) 47 = 0.20. (e) ver = 0.30. (f)

Nol & ()37

115



0.1 02 03 04
0 ‘ ‘ T
Stxd : ! Stx?2 B

o —0.005 - . i
= : {
: 001 Stx3 f
v i lambda/Stx1
b0 !
3
3

0
¢ -0.011
i
%
%
‘D —0.02 N
20
§ ~0.03
~0.04 B
YeI
O.Ll 0.12 0.3 0.14
0 sl / | |
Stx4, H Stx2 f
I
B | [
g ~00! ! Stx3 I
] ;r" | i lambda/Stx1
£ —0.02 - i J /
8 b f
) ! !
¥ -0.03 / S
— e 4
g .- .
§ L
s

Figure 5.3: Plots of the leading eigenvalue of the lysogenic equilibrium against ~.s for
phage lambda and the four Stx scenarios, at three different nutrient levels (a) Low
nutrient level. (b) Medium nutrient level. (c¢) High nutrient level.
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5.3.2 Varying the nutrient level: comparison of Stx scenarios and
lambda

Figure 5.1 shows that over the range 0 < v < 0.10, the stability of lysogens of
lambda and Stx3 are very similar. However, for higher values of 7.7 the stability of
Stx3 lysogens are clearly lower than those of lambda.

Figure 5.3 compares the stability of lysogens of lambda and the four Stx scenarios
at three different nutrient levels (corresponding to the first (low), third (medium) and
fifth (high) nutrient levels considered by Bremer and Dennis (1996)), and at each level
the pattern is the same. As . is increased from zero, the stability of all five lysogen
tvpes increases until a maximum level of stability is reached (corresponding to the
(—~ero — 1) eigenvalue). A small increase in 4.7 is sufficient to reduce the stability of
Stxd lysogens (as a different eigenvalue becomes dominant), and further increases in v,.;
lead to reduced stability of lysogens of Stx2, followed by those of Stx3, and finally Stx4
and lambda (whose stability curves almost overlap). Although this pattern is observed
for each of the three nutrient levels considered, notice that for the medium nutrient
level lysogen stability begins to decrcase at lower values of v.; compared to the low
nutrient level, so that (for example) if v,; = 0.40 then with a low nutrient level there
are no lvsogenic equilbria, but with a medium nutrient level there is still a lysogenic
equilibrium for Stx4. There is very little difference between the stability curves for the

medium and high nutrient levels.

5.3.3 Varying the temperature: phage lambda

Bremer and Dennis (1996) provide data for five temperatures: 20°C, 25°C, 30°C,
35°C. and 40°C. The eigenvalue formulae (5.3.1)-(5.3.1) apply here (for low values of
4¢1). but notice that the value of [Og] does not change with temperature (as we are
assuning that the macromolecular composition of the cell is independent of temper-
ature). Also in this case the calculation of the f functions depends on temperature,
since the expressions for these functions involve an absolute temperature term, T. The
Bremer and Dennis (1996) data show that as temperature increases, the E.coli growth
rate u increases. Figure 5.4 (b) shows how lysogen stability changes with growth rate
for ditferent values of ~.r.

For 7.7 = 0 the leading eigenvalue is given by (5.3.3), while for v, = 0.05 and
Ae; = 0.1 the leading eigenvalue is given by (5.3.2). In all three cases, an increase in p
resulting from an increase in temperature causes lysogen stability to increase.

A different pattern of stability is observed for higher values of 7.;. For example,
with 7.y = 0.35 the stability increases as temperature increases from 20 to 30; but as

jt increases from 30 to 35, there is a fairly sharp decrease in stability. For high values
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ol ~.7. there are two opposing factors to consider. As the temperature is increased, the
increase in the growth rate tends to increase stability, while the changes in the deriva-
tives of the functions [y, [, and fr tend Lo reduce stability. At lower temperatures
the effect of the growth rate dominates, resulting in increased stability, while at higher
temperatures the changes in the derivatives dominate. Unlike the nutrient level case,
all four partial derivatives contribute to the lowered stability. Figure 5.5 shows plots

of all four cigenvalues for different values of ~,;.

118



0.018
0.016
0.014

£0.012

2 001

=

Z 0.008
$50.006
0.004 -

0.002 A

05 20 25 30 35 40

Temperature
Temperature
20 30 40
0 0.45

-0.005 1
©
=) S /
g -0.01 N /
2 -0.015 1 05 - />, 035
%O ”’/ / o
= —0.02 1 N P
3 M /00
X \ -
~= -0.025 1

0.05,0.1 .
~0.03 - B
Temperature -
20 30 40
0

~0.005 -
L
-
£ -0.01
]
&
g —0.015 7
g -0.02
= ;
= -0.025

-0.03 - C
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ture. (a) The relationship between temperature and E. coli growth rate reported by
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Figure 5.6: Plots of the leading eigenvalue of the lysogenic equilibrium against ~.; for
phage lambda and the four Stx scenarios, at three different temperatures. (a) 20°C.

(b) 30°C. (c) 40°C.
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5.3.4 Varying the temperature: comparison of Stx scenarios and lambda

Figure 5.4 shows that over the range 0 < v, < 0.10. the stability of lysogens of
Lambda and Stx3 are very similar. However, for higher values of ~.; the stability of
Stxd lyvsogens are clearly lower than those of lambda.

Figure 5.6 compares the stability of lysogens of laiubda and the four Stx scenarios
at three different temperatures (20°C, 30°C, and 40°C), and at each level the pattern
is the same. As 7. is increased from zero, the stability of all five lysogen types increases
until a maximum level of stahility is reached (corresponding to the (.., — p) eigen-
value). A small increase in 7e7 is suflicient to reduce the stability of Stx4 lysogens (as
a different cigenvalue becomes dominant), and further increases in 7.7 lead to reduced
stability of lysogens of Stx2, followed by those of Stx3, and finally Stx4 and lambda
(whose stability curves almost overlap). Although this pattern is observed for each of
the three nutrient levels considered, the model indicates that at 30°C, lysogen stability
begins to decrease at lower values of v.; compared to lysogens at 20°C. Similarly at
40°C, reduced lysogen stability is.observed at lower values of v.; (compared to lysogens
at 30°C).

5.3.5 Multiple prophages

Although lysogens are generally immune to superinfection by phages of the same
strain as the resident prophage, it has been shown that single lysogens of the Stx phage
$24;; may be superinfected by a ®24; phage; this superinfecting phage may in turn
lvsogenize the host cell so that a double lysogen is formed (Allison et al, 2003). The
mechanism which enables superinfection to take place is not known at present (Fogg
et al, 2007). Lysogens containing multiple prophages may occur more frequently in
environments where there is a high ratio of phages to host cells, since single lysogens
will undergo superinfection at a faster rate under these conditions.

Figure 5.7 shows the stability of Stx and lambda lysogens which contain multiple
prophages. In each case, as 7.7 increases from its initial value of 0, the leading eigenvalue
at the lysogenic equilibrium reaches a minimum of around -0.036 and then eventually
begins to approach 0. The point at which the stability begins to decrease depends on
the munber of prophages. For lysogens which contain a large number of prophages, a
large increase in v+ (from its initial value of 0) must occur before the lysogen stability
begins to decrease. This indicates that the presence of multiple prophages helps to
stabilize the lysogen.
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Figure 5.7: Plots of the leading eigen'value of the lysogenic equilibrium against ~y.; for
phage lambda and the four Stx scenarios. (a) 1 prophage per lysogen. (b) 2 prophages
per lysogen. (c) 3 prophages per lysogen. (d) 4 prophages per lysogen.
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5.3.6 Concluding remarks

Since Stx lysogens can only release toxins on lysis of the host cell, it is important to
nnderstand the environmental factors which influence the rates at which Stx prophages
initiate lyvsis of their bacterial hosts. In this Chapter. the impact of varying (seperately)
nutrient levels and temperature on the stability of individual lysogen cells has been
considered.

If a change in the environmental conditions occurs which improves the condition
of an individual host cell then there may be a fitness advantage to the prophage in
remaining dormant, since induction causes the demise of the host cell and there may
not be a supply of other healthy cells to infect. On the other hand, as environmental
conditions improve, it is likely that the host cell population will expand. In this case,
there may be a fitness cost to a prophage which remains dormant, since the opportunity
to infect the supply of new cells is foregone. This could be investigated further by
introducing some environmental variability into a population level model of temperate
phages and host cells (such as the one studied in Chapter 3).

Within the constraints of the model, the results show that for a given phage type
(lambda or Stx) the iimpact on lysogen stability of a change in either nutrient level or
temperature depends on the value of the CI degradation rate, 4.7. For low values of
A¢7 an increase in nutrient level or temperature will result in an increase in stability,
while for high values of 4.7 the opposite is true. Alti:ough the increase in the E. coli
growth rate resulting from an increase in nutrient level or temperature will always
tend to increase stability, there are other factors which may counteract this effect. In
particular, the rates of change of the level of production of My and M., transcripts
tend to be higher for higher values of v.; and at higher nutrient levels and temperatures,
which may contribute to reduced lysogen stability. By analysing the Jacobian matrix
at lysogenic equilibria, and (for low values of ~v.7) obtaining analytical expressions
for the cigenvalues, it was possible to gain an insight into the mathematical reasons
for the astability patterns observed. However, experimental work is needed to further
investigate the biological implications of these results.

One assumption which is implicit in the modelling approach used is that the value
of ~.; is not dependent on either temperature or nutrient level, and this assumption is
reasonable over ranges of temperatures and nutrient levels which do not threaten the
survival of the host. However, at extreme tempcratures or very low resource levels,
there is likely to be a significant. inipact on 5., and so a different approach would be
needed i these cases.

The different values of 4.; considered in this Chapter are assumed to arise from an

external factor such as ultra-violet light. It is likely that the presence of ultra-violet
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light would influence other model parameters as well, such as rates of transeription and
translation. Further experimental is necded to determine the extent of such influences.

I this Chapter. it has also been shown that lvsogens containing multiple prophages
are more stable than single prophage lysogens. If multiple prophage lysogens comprise
a large proportion of the total lysogen population, this may indicate that there is a
shortage of susceptible host cells, and so there is likely be a fitness advantage associated
with lower rates of induction. Lower induction rates imply lower levels of toxin release
by wultiple Stx lysogens, but this etfect may be balanced out to some extent if multiple
Stx lvsogeus are capable of synthesizing a higher number of toxin molecules during
induction than single lysogens (Fogg et al, 2007)

To swinmarize, there is a dearth of experimental evidence regarding the influence of
environmental conditions on lysogen stability. However, by making use of the available
data concerning the E. coli growth rate and chemical composition at different nutrient
levels and temperatures, this Chapter represents a first step in assessing the impact of
the environment on the stability of Stx lysogens. and hence on levels of toxin release
and virulence. Future work could involve investigating the effects of temperature and
nutrient level on the levels of toxin release by populations of Stx lysogens. Another
question to be considered is whether lysogens of different Stx phages respond differently

to changes in the environment.



Chapter 6

Stochastic modelling of the intial
decision between lysis and
lysogeny in Stx phages

6.1 Introduction

As discussed in Chapter 4, an infection of an E. coli cell by one or more Stx phages
will only lead to the release of Shiga toxins on lysis of the host cell. In the previous
Chapter. the stahility of Stx lysogens was considered via a deteriinistic mathematical
model, Here, the initial decision between lysis and lysogeny in Stx infections, and
the nmplications for the rate of toxin release, will be considered within a stochastic
framework. )

During a phage infection, the times at which events such as gene expression and
transiation occur depend partly on random {actors such as the erratic motion of molecules
within the cell. Unlike the deterministic modelling approach, the stochastic framework
cnables the random nature of the lysis-lysogeny decision to be modelled. Furthermore
it provides a more natural setting for modelling small amounts of substances, since
the quantities of interest are discrete numbers of molecules rather than continuous
concentrations.

Arkin et al (1998) presented a stochastic model based on the known regulatory
mechanisms (described below) which control the lysis-lysogeny switch in phage lambda
(Herskowitz and Hagen, 1980; Ptashne, 1992). This is a highly complex model, involv-
ing five genes and their respective protein products, and therefore running the model
requires a large amount of computing resources. In this Chapter a similar model is
developed, in which certain simplifying assumptions are used in order to reduce the
computational workload. This model is then adapted to enable Stx phage characteris-
tics to be modelled.

A single run of the model corresponds to one complete cell eyele. and the results
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are the numbers of cach type of molecular entity over this time period. The outcome of
each run is either lysis or lysogeny, and so the probability of lysogeny for a particular
phage can be estimated by carrying out a large number of runs and calculating the
proportion of lysogenic outcomes.

It would have been desirable to carry out many more runs of the model. and to
investigate more Stx scenarios, than are presented here. However, limitations imposed
by computer resources and time have meant that the results in this Chapter represent

a preliminary investigation rather than a full analysis.

6.2 The lambda lysis-lysogeny switch

Here a description is provided of the biological processes which featured in the Arkin
et al (1998) model. and a smmnary of the results which were obtained.

The model includes the proteins CI, Cro, N, CII, CIII, and their respective genes
cl, cro, n, cll, and ¢lll. Monomers of CI and Cro can dimerize to formm Clp and Cros
molecules, Figure 6.1 illustrates the various operator sites, promoters and terminators
and the sequence of positions of these regulatory regions on the lambda genome. At
the start of an infection there are no protein molecules present, but subsequently gene
expression and the resulting mRNA transcripts translated into protein molecules. The
siimulation proceeds until the end of the cell cycle (35 minutes) is reached; at this time,
it is the number of Cls and Crog molecules which indicates whether lysis or lysogeny
has taken place. If there are more Cly molecules than Cros molecules, then the outcome

of the infection is lysogeny, otherwise the outcome is lysis.

N-UTL OR NUTR
— I n Y cf l I Ccro l] ] cdl +—
Ty, P Prm  Pr Tri Pre
OL OE

Figure 6.1: The region of lambda DNA which comprises the molecular switch between
lysis and lysogeny. After Ptashne (1986).

Immediately after phage infection of a host bacterial cell, host RNAP molecules
bind and begin transcription at Py and Pg. The resulting mRNA transcripts are

terminated when the RNAP molecule reaches the end of the genes n (in the case of
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leftward transeription) and ¢ro (in the case of rightward transcription). The transcripts
are translated by lost ribosomes into molecules of the regulatory proteins N and Cro.

The protein n acts as an anti-terminator. In the absence of the protein n. tran-
scription is terminated once the RNAP molecule encounters the terminators T and
Ty at the end of the n and ero genes respectively. However, as the concentration of
n increases, molecules of n may act to anti-terminate RNAP at the NUT, and NUTy
sites. When this happens, the RNAP molecule is able to continue moving along the
DXNA molecule beyond the terminators and thus to transcribe the additional genes ¢l
and clll

The CII protein is vulnerable to attack by a bacterial protease known as HfiB
(Cheng et al. 1988). and it is proposed that a second protease also acts to degrade CII
(Kihara et al. 1997): in Arkin et al (1998) these two proteases are labelled P1 and P2.
The function of the protein CIII is to bind to molecules of P1 and P2 so as to protect
C11 from degradation.

The el gene has two promoters, Pray and Pgry. The Ppray promoter has three
binding sites: Ogl. Op2, and Ogr3, while Py has a single binding site, Q. In the
carly stages of the infection a Croz dimer binds to O3, and this is sufficient to prevent
transcription of ¢l from Pgas. Transcription of ¢l from Ppg can only proceed when a
molecule of CII binds to Og.

The level of activity of the protein CII largely deterinines whether or not lysogeny
occurs. If there is a sufficient level of CII, then a CII molecule may activate the cf
promoter Pgg. A Cly dimer can then bind to the operators Op and Og, and tilereby
promote the expression of ¢l from Pga while turning off the promoters of all other
genes. Thus, if CII is highly active the cro gene will be repressed and the phage will
formn a lvsogen with its host. On the other hand, if production of ClI is low then Ppg
will not be activated; thus, there will not be sufficient production of Cl to repress cro,
and so production of Cro will be unchecked and the host cell will be lysed.

In Arkin et al (1998) a cell was considered to become committed to lysogeny if
[CI]>[Crog] at the end of the 35-minute cell cycle, and thus the probability of lysogeny
was estimated by running a stochastic simulation of the above model (using the Gille-
spie algorithm. described below) many times, and calculating the proportion of runs
which satisfied this condition. Arkin et al (1998) calculated the probability of lysogeny
for phage lambda at different multiplicities of infection (MOI) and found that as MOl
increases, the probability of lysogeny also increases, this being in agreement with pre-
vious experimental work by Kourilsky (1973). With their chosen parameter set (which
was derived from published values in the literature), it was found that with MOI=1
the probability of lysogeny was approximately zero, while the probability of lysogeny

approaches 1 as MOI is increased above 10.
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6.3 The stochastic modelling framework

In order to model the processes described above, a large number of chemical re-
actions of different types must be considered. In a chemical reaction. the molecules
react together to produce the product molecules. The number of reactant molecules
determines the order of the reaction, e.g. st order (a single reactant), 2nd order (two
reactants) etc. For example, a second order reaction with a single product may be

written as:

Ri+Ry— S

The frequency with which this reaction occurs depends on the concentrations of Ry
and Ry and a parameter known as the rate constant, k. Thus, in a differential equation

model, the rate at which the concentration of S increases is given by

Gl

o5 = kR Ry

where the notation [X] means the concentration of substance X.

However, a continuous deterministic model described by differential equations is
not appropriate for every situation. For example, small numbers of reactant molecules
and infrequent reaction events can generally be handled better by a discrete sto¢hastic
model. In this type of model the quantities of interest are the numbers of molecules
of the substances (rather than their concentrations), and the times at which reaction
events ocenr are randomly generated from a chosen probability distribution.

The Gillespie algorithm (Gillespie 1976, 1977) is a stochastic simulation which pro-
ceeds by determining the time at which the next reaction event occurs, and the identity
of this reaction (from a list of n possible reactions). The state of the system (i.e. the
number of molecules of each substance) is then updated according to which reaction
has occurred.  This process is repeated until the simulated system time t reaches a
certain value t,,.

At cach iteration of the algorithm, it is necessary to calculate the reaction propensity

of each reaction. For example, the propensity of the reaction

Ri+ Ry — §

is given by erprg, where 7y and ro are the numbers of molecules of [2; and [ respec-

tively, and ¢ is the stochastic rate constant for this reaction.
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Suppose that the latest reaction event ocenrred at time f. The length of time 17 antil
the next reaction event is calculated as an exponential random variable with parameter

17370 hiyoso that

i=]

n
PT<t)y=1- cxp(wl,Zhl) t>0
i=1
where Ny is the propensity of the it reaction.

The identity of the reaction which occurs at time ¢ + 7" is determined by dividing
the interval [0,1] into n sub-interval, where the widths of the sub-intervals are given by
hi /¥ 0 hi (0= 1.n). A uniform random number U is then generated in [0.1]. and if
U falls in the i sub-interval, then reaction i is selected.

There are situations where the time to the next reaction event is not exponentially
distributed. For example, if the reactions are taking place within a growing cell then
the increasing volume affects the frequency with which molecules collide and hence
react with each other. Also, if a particular event consists of a series of exponentially
distributed time steps, then this may be modelled by a single random number from a
gamina distribution; an example of such an event is transcription of a gene. in which
the RNAP enzyme moves from one end of the gene to the other in a scries of steps from
one nucleotide to the next. The Gibson-Bruck algorithin (Gibson and Bruck, 2000) is
cquivalent to the Gillespie algorithm, but it is formulated in such a way that it is easier
to incorporate non-exponentially distributed reaction times. )

Following Gibson and Bruck (2000), the simulation algorithin used to generate the
results in this Chapter divides the set of all possible reactions into 3 classes: (i) gamima

; (ii) exponential; and (iii) second order. These are described below.

6.3.1 The gamma class of reactions

Movement of an RNAP enzyme along a DNA molecule and movement of a ribo-
some along an mRNA transeript are both modelled using a gamma distribution. This
is possible because both these types of events consist of a series of steps. For exam-
ple. suppose an RNAP enzyme binds to the promoter of a gene whose length is A
nucleotides. Transcription of this gene involves movement of the enzyme from the pro-
moter (call this position 0 on the DNA) to the terminator (position A on the DNA).

which can be represented as:

RNAP.DNAg — RNAP.DNA
This event can be divided into M steps of the following form:
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RNAP.DNA,, — RNAP.DNA, 4,

where 0 < n < Af - 1. The time at which the next single-nucleotide step oceurs can
be modelled as an exponential random variable, and so the overall time it takes for the
enzyme to transcribe the gene is the sum of M exponential random numbers. Using
the result from probability theory that a sum of independent identically distributed
exponential random variables has a gamma distribution (Leon-Garcia. 1994). it is only
necessary to generate a single gamma random variable to simulate transeription of the
gene, rather than M exponential random variables. Given that genes may be several
hundred nucleotides long, this approach greatly increases the speed of the simulation
process. Some accuracy is lost however, since it must now be implicitly assumed that
the movement of an enzyme molecule (or ribosome) proceeds unhindered at all times.
whereas in reality there may be occasions when an enzyme has to wait for another

enzvime molecule ahead of it to move out of the way.

6.3.2 The exponential class of reactions

Of the remaining reactions, those which are of 1st order may be modelled as having
exponential firing times (second order reactions, which are infienced by changes in
volume resulting from cellular growth, must be handled seperately). These 1st order
reactions include degradation and dissociation. Degradation is the process by which a

protein such as C'I is lost to the system:

Cl— ¢

and dissociation is where a protein dimer separates to form two monomers, ¢.g.:

Croy — Cro + Cro

6.3.3 The second order class of reactions

Sccond order reactions involve two molecules colliding together and reacting to form
new molecules. Since the reactions are taking place in a growing cell, the increasing
volume affects the rate at which molecules collide. Allowing for increasing volume
incans that the distribution of firing times for second order reactions is not exponential.

At time t, the variable

R=V (U /%) /e (6.3.1)
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Phage Binding
scenario | energy of
Cl, to Og2.
AGH!,
{(keal / Mot)
Lambda | -10.1

Stx 1 -8

Stx 2 -7

Table 6.1: The lambda and Stx phage scenarios.

has the correct distribution for a second order reaction (Gibson and Bruck. 2000).
where: V(1) is the cell volume at time ¢; U is a Uniform [0.1] random variable: ¢ is the
cellular growth rate; and «; is the propeunsity for reaction i,

An example of this type of reaction is dimerization, where two protein monomers

join together to form a dimer, e.g.:

Cro + Cro — Croy

6.4 The model

A Matlab (The MathWorks, Inc.) algorithin was written to model the lysis-lysogeny
decision in phage lambda and in two Stx scenarios. As discussed in previous Chapters,
the value of the binding energy AGSL”Q in the Stx phage 933W is lower than in phage
lambda (Koudelka et al, 2004). Thus Stx scenarios were constructed by varying the
value of this constant, as shown in Table 6.1. Following Arkin ct al (1998). the multi-
plicity of infection (i.e. the number of infecting phages per host cell) was set equal to
6.

An outline of the algorithm used is given below, and an illustration is provided in
Figure 6.2.

(1) Initialize the system.
(a) Let T be the system time; set T=0.
(b) Let Vg he the initial volume of the cell; set Vi = 1.
(¢) Let X be the system state. This is a vector which stores the current number of

molecules for each chemical species in the model. Set X equal to its initial value. Xq.

{d) The gamna class:
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Set time t=0, cell volume V(1)=1, and state X=X0.

Let L be a zero matrix with g columns (where g is the number of
reactions in the gamma class) and initlally 1 row.

Let CO, C1, and C2 be the three reaction classes (gamma,
expone ntial and second order, respectively).

Generate putative reaction times for every feasible reaction (given
the current state X), and set tequal to the lowest of these values.

Let j be the the identity of the reaction occurring attime t.

Y

Update the state X to reflect the fact that reaction j has occurred.

j ECO jeck JEC2

Update ali firing Update all firing timesin C1 and C2. Update all firing

timesinCland C2. times in C1 and
Generate a new putative firing time for 2

Remove the firing reaction j. '

time corresponding Generate a new

] i necessary, generate a new gamma

to reaction j from putative firing
firing time and insert into the :

the matrix (. time for reaction .
appropriate column of L.

-

Find the lowest putative firing time of all three
reaction classes, and set tequal to this value.

Let j be the Identity of the reaction occurring at
time t. Update V=V(1).

f tbTMAX then stop.

Otherwise continue.

Figure 6.2: The model algorithm. (The notation j € CO0, for example, means that
reaction j is a member of the gamma class, C0).
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There are 20 reactions in the gamma class, 15 of which correspond to the movement
of RNAP along a DNA molecule; the remaining 5 reactions correspond to movement
of a ribosome along an mRNA transcript, i.e. translation.

Let L be a matrix with 20 columns and (initially) 1 row. This matrix will contain
the firing times of the reactions in this class. Since the first reaction which occurs can-
not be in the gamma class, set every entry of L equal to oo. Let t0=oc be the putative

time at which the next gamma reaction fires.

(e) The exponential class:

There are 52 reactions in the exponential class. Reactions in which an RNAP
molecules bind to promoters on a DNA molcecule, and reactions in which ribosomes
bind to mRNA transcripts, are included in this class.

For cach exponential reaction i (1 < i < 52), obtain a putative firing time by gen-
crating a random number from the exponential distribution with parameter 1/(&,.N,).
where &; is the stochastic rate constant and N; is the initial number of molecules of the
reactant. If a reaction is not possible at this stage (i.e. if there are no molecules of the
reactant present), set the putative firing time of this reaction equal to oc. Set 11 equal
to the lowest firing time.

Note that the first reaction to occur will be an RNAP molecule binding to a pro-
moter, since no other events can occur until this has happened; therefore all other

reaction types in this class have firing times of oo at this stage.

(f) The second order class:

There are 8 reactions in the second order class, which include protein dimerization
(resulting in the formation of CI; and Cros molecules) and association of proteins
(cither CII or CII1) with proteases (either P1 or P2).

For each second order reaction, a putative firing time is generated using (6.3.1).

Let t2 be the putative time at which the next second-order reaction fires. Since the

first reaction to occur cannot be a second order reaction, set t2=oc.

(2) Time iterative loop.

(a) Identify which reaction will occur next, by determining which of 10, t1. and t2
has the lowest value, Label this reaction j.

(b) If reaction j is from the gamma class, set T=t0; else if the next reaction is from
the exponential class, set T=t1; else if the next reaction is from the second-order class,
set T=t2.

(c) Update the system state X according to reaction j.

(d) Calculate the new volume of the cell at time T, V. Note that the cell volume
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increases with time such that at the end of the cell evele the volume has doubled (i.e.
the cell volume increases from 1 to 2 over the course of the cell evele).

(e) If reaction j was from the gamma class, remove its firing time from the matrix

(f) Generate new putative firing times for cach reaction in the exponential and
second order classes. Let t1 and t2 be the lowest firing times for exponential and
second order classes respectively.

(f) If reaction j has resulted in an RNAP molecule binding to a promoter or a
ribosome binding to an mRNA transcript (both of which belong to the exponential
class), then the next movement of this molecule will be a reaction belonging to the
gannna class; therefore it is necessary to obtain the firing time of the corresponding
gamma reaction as a random number from the appropriate gamma distribution. Then
insert this firing time into the appropriate colummn of the matrix L.

(g) Set t0 equal to the lowest value in the matrix L.

(L) If the end of the cell cycle has not been reached (i.e. if T < 35 minutes) go to

step 2(a): otherwise stop.

Thus at each iteration of the algorithm, the algorithm moves forward in time to
the next reaction event and updates the numbers of molecules of each substance (e.g.
proteins, mRNA transcripts etc) accordingly. Whether the outcome of the run is lysis
or lysogeny can be determined by comparing the final numbers of molecules of Cl; and
Croy at the end of the 35 minute cell cycle; if there are more molecules of Cla than
Cro; then a lysogen has been formed, otherwise the cell has been lysed. By running
the algorithm many times for phage lamhda and the Stx scenarios, the proportion of
runs which result in lysogeny can be obtained for each phage type.

To obtain the results in this Chapter, Condor (The Condor Software Program) was
used to distribute the algorithm to a large number of computers around the Liverpool

University campus, so that multiple simulations could be carried out in parallel.

6.5 Results and Discussion

The algorithm described in the previous section was run many times for phage
lambda and two Stx scenarios presented in Table 6.1. For each phage scenario 100 runs
were initiated (via the Condor system), but not all of the runs were completed within
the available time: the numbers of completed runs are given in Table 6.2. Thus, there
is a possibility of bias in the results - it may be that runs which result in lysogeny
generally take louger to complete than lytic runs, for example. However, this concern

is lessened to some extent by the approximate agreement between the phage lambda
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lvsogenic proportion obtained here and that of Arkin et al (1998).

Figure 6.3 shows the final numbers of molecules of CIy and Croy for each completed
run of the algorithm, and for each of the three phage tvpes. The plots also show
the straight line along which #(Cly)=#/(Cros): points above this line correspond to
Ivtic outcomes, and points below correspond to lysogeny. The numbers of lytic and
lysogenic outcomes are given in Table 6.2. For phage lambda the proportion of lysogenic
outcomes is (145, which is in line with the results obtained by Arkin et al (1998) (for a
multiplicity of infection of 6). For the two Stx scenarios this proportion is much lower
(0.05 and 0.07). indicating that the reduced binding encrgies (as given in Table 6.1)
have a significant impact on the probability of lysogeny. For both Stx scenarios, the
final number of Cly molecules varies between approximately 30 and 260, while the
number of Crop molecules varies between 160 and 400 (with two outliers in the case of
Stx1).

In Chapter 4 it was shown that the weaker binding energy between the operator
site Ogp2 and the repressor Cly in the Stx phage 933W (compared to phage lambda)
contributes to the lower stability of its lysogens. The results of this Chapter confirm
that this weaker binding energy also leads to a lower probability of lysogeny. and hence
further increases the rate of toxin release.

One question which arises is whether the probability of lysozeny and the induction
rate always evolve in tandem. Recall that in Chapter 3 a trade-off function was assumed
to exist between these two parameters, such that a change in one of the paramecters
was always accompanied by a change in the other one. The results from Chapter 4 and
Chapter 6 also indicate that changes in binding energies have an impact on both param-
eters. Since both parameters are determined by the same switching mechanism. any
change which affeets this mechanism is likely to affect both parameters simulatenously.
There may be circumstances in which a phage population benefits from a change in only
one of the parameters while keeping the other fixed, but whether this can be achieved
il practice is not clear.

In Arkin et al (1998). the authors were able to carry out thousands of runs with the
help of a supercomputer, whereas much smaller numbers of runs have been completed
here. While it seems clear that the change in binding energy has an impact on the
probability of lvsogeny. the relatively siall number of runs that have been completed
mean that we cannot be certain as to the magnitude of this impact; part of the difference
between the results for the three phage scenarios is attributable to random variation.

As in Chapter 1, it has been necessary to use phage lambda parameter values for
modelling Stx phages, owing to the lack of experimentally determined values for Stx
phages. It may be possible in the future to obtain the actual Stx values, and so to

determine other parameters which may have a significant impact on the probability of
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lysogeny.

Lower probabilities of lysogeny and lower lysogen stability are both associated with
higher rates of toxin release into the environment. since toxins are only released when
the host cell is lysed. While it is known that certain Stx lvsogens have higher rates
of induction than phage lambda (Livny and Friedman, 2004), there is currently no
published data relating to probabilities of lysogeny for Stx phages. This is another
important arca for future experimental research.

Following Arkiu et al (1998), a multiplicity of infection (MOI) of 6 has been assumed
in this Chapter. The MOL is known to have a major effect on the probability of lysogeny
in phage lambda (Kourilsky, 1973); for low MOI (i.e. 1 or 2). the probability of lvsogeny
is close to zero, and this is likely to be the case for Stx phages as well. Thus. for low
MOI. any reduction in the probability of lysogeny resulting from the lower binding
cuergy of 933W is likely to be negligible.

The approach used in this Chapter could theoretically be used to model the im-
pact of environmental conditions on the probability of lysogeny. Given the very large
number of parameters which appear in the model, a thorough analysis of the effect
of temperature, say. would require a huge amount of experimental work to determine
parameter values at different temperatures. However, changes in certain selected pro-
cesses could be investigated - for example. if rates of transcription and translation
were known to increase in respounse 10 increased temperature, then these rates could be
adjnsted accordingly in the model and the new probability of lysogeny determined.

It would be instructive to extend the model to include transcription and translation
of the Shiga toxin gene. However, the biological knowledge of the mechanisms governing
expression of the toxin gene in Stx phages such as 933W is not yet sufficient for this,
and furtherimore the greater complexity of such a model would require much greater
level of computing resources.

In an exact stochastic simulation algorithin, such as the Gillespie algorithm (Gille-
spie, 1977). every reaction event is modelled seperately. Also, the algorithin must be
run a large number of times in order to obtain statistically significant results. Therefore.
stochastic modelling of complex cellular processes demands high levels of computational
power, and this places severe restrictions on the amount of work that can be carried
out in this area.

An alternative to exact algoritlins is the use of approximate algorithms, which do
not model every reaction event individually. These include hybrid algorithms in which
sonie reactions are modelled stochastically while others are modelled deterministically
(e.g. Puchalka and Kierzek, 2004), and leaping algorithms in which each time step
may include more than one reaction event (e.g. Gillespie, 2001). In this Chapter, the

use of the gamma distribution to model transeription and translation enabled simula-
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Phage Total number | Number of | Number of Proportion of
scenario | of runs Ivtic runs | lysogenic runs | lvsogenic rns
Lambda | 69 38 31 0.45
Stx 1 41 39 2 0.05
Stx 2 o7 n3 4 0.07

Table 6.2: Table of results for phage lambda and the two Stx scenarios.

tion times to be reduced, but a single run of the algorithm still required several days
to reach completion. Any attempt to capture cellular processes accurately requires
the construction of highly complex models, and so there is still a need for developing
methods which reduce the amount of time and computer power needed to carry out
simulations.

To conclude, this Chapter has illustrated the impact on the probability of lysogeny
ol one aspect of the genetic switeh in Stx phages. The structure and behaviour of the
genetic switch in Stx phages plays a major role in determining the level of toxin release
and hence the spread of disease. and the approach of this Chapter provides a basis for

future modelling investigations in this area.
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Chapter 7

Conclusion

This thesis has considered models at both the population and molecular level in
order to investigate the dynamics of temperate phages and their host cells. in particular
Stx phages and the related phage lambda. Three timescales have been considered:
cellular time, ecological time, and evolutionary time. Understanding the factors which
influence the probability of lysogeny, and also the stability of lysogens. is especially
important in the case of Stx phages because these characteristics are direetly related
to the rate at which Shiga-toxins are released into the environment, and hence the risk
of outbreaks of disease in humans.

A Jacobian stability analysis was applied to the population dynamical model of
phages and bacteria of Stewart and Levin (1984). The [ull model included temperate
and virulent phages, and two bacterial populations, one of which was sensitive to phage
infection and one whicli was resistant; a number of sub-models were also considered. For
each model it was possible to identify equilibrium points, containing all possible types of
phage and bacteria, at which the populations would remain constant. Simulations were
carried out in order to illustrate different scenarios such as the coexistence of temperate
and virulent phages, and the successful invasion of a virulent phage population by
temperate phages; this was achieved by varying parameters such as the adsorption
rates and burst sizes of the two phage strains, the rate at which resources flow into
the environment, and the rate of growth of the bacterial populations. The results
of the simulations were supported by analytical derivations of feasibility and stability
criteria for the model equilibria, where possible. It was shown that the ontcome of
competition between a virulent and a temperate phage strain depends on particular
paraeter values, in particular the adsorption rates and burst sizes of the two strains,
and also the probability of lysogeny and the induction rate of the temperate strain.

An adaptive dynamics approach was applied to the Mittler (1996) population dy-
namical model of temperate phages and bacteria, in order to investigate the evolution

of temperate phages. A trade-off relationship was introduced such that the induction
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rate of lvsogens was an increasing function of the probability of lysogeny. This type
of modelling is used to identify evolutionary singularities, which are points which evo-
lution moves either towards or away from. It was shown that attractor and repellor
singularities are possible, but brauching points, which are associated with sympatric
speciation. do not arise. Further rescarch is needed to investigate whether the absence
of branching points is simply a feature of the particular model considered, or reflects an
actual characteristic of temperate phage populations. An initial approach could be to
identify a ditferent trade-ofl relationship, perhaps involving the probability of lvsogeny
as before, but replacing the induction rate with a different quantity (e.g. burst size.
adsorption rate etc.), and then to find out whether branching occurs.

The stability of Stx lysogens was also investigated. It was shown how a model
of the lambda molecular switch (Santillan and Mackey. 2004) could be extended to
model Stx phages as well. In the literature it has been reported that there are Stx
phages which differ from phage lambda in terms of the numbers of binding sites at
the molecular switch. and also the binding energies bhetween binding sites and kev
regulatory proteins. Hence, various Stx ‘scenarios’ were constructed which reflected
these known characteristics. It was found that the difference in molecular binding
energies between Stx and lambda phages does account {or the lower stability of Stx
lysogens. There is scope for further modelling work to be done in this arca, once all
the relevant binding encrgies have been measured and genome structures determined
for particular Stx phages.

The influence of selected environmental conditions on Stx lysogens was also ex-
plored, again using a scenario-based approach. Both temperature and nutrient level in
the environment influence the growth rate of the host cell (Bremer and Dennis, 1996),
and this in turn may influence the stability of the lysogen. Results showed that the
degradation rate of the phage regulatory protein CI, 4.7, plays a significant role in
determining whether changes in temperature or nutrient level result in an increase or
decrease in stability. With both temperature and nutrient level fixed, it was found
that an increase in 4. leads to lower stability. This may be explained in terms of a
threat to the host survival: high values of v.; occur when there is a threat to the host,
such as the presence of UV light (Ptashne, 2004), and reduced lysogen stability under
these conditions is likely to improve the fitness of the phage population; the new phages
which are released on induction may have the opportunity to infeet new cells and so
increase the chances of survival of the phage population.

The situation is more complicated when 4. is fixed, and either temperature or
nutrient level is allowed to vary. For the ranges of temperatures and nutrient levels
considered, it was shown that for low values of 4., an increase in temperature or

nutrient level tended to increase lysogen stability; however, for high values of 4. an
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increase in temperature or nutrient level resulted in a reduction in lyvsogen stability.
Progress was made in understanding the mathematical reasons for the occurence of
these interesting patterns; however, the huplications in a biological context are less
clear. Therefore experimental work would be useful to confirm the results in practice.

A stochastic model of the lambda genetic switch (Arkin et al, 1998) was modified
in order to investigate the probability of lvsogeny in Stx phages. Stx scenarios were
constructed with different values of the binding energy constant, and the results showed
that weaker binding energies were associated with lower probabilities of lysogeny. Thus
the weaker hinding energy in Stx phages (compared to phage lambda) leads to a greater
proportion of lytic infections and hence increases the rate of toxin release into the
environment.

There are many possibilities for future research. Studies in adaptive dynamics
could be extended to considering the coevolution of temperate phages and bacteria,
The modelling of competition between known Stx phage strains such as 933W and
H19B could also be developed, in conjunction with experimental work. An important
question to be considered is niche differentiation amongst Stx strains and the degree
to which competition influences niche overlap.

It is currently not clear whether or how Stx phages derive fitness advantage from
their ability to synthesize toxins (Herold et al, 2004). However. it may be speculated
that the presence of the released toxins alters the environment in such a way that there
is a benefit to the host, such as an increase in available resources. The phage population
would then benefit from having a greater supply of uninfected host cells to infect. It is
also likely that Stx phages confer many other functions upon their hosts. and thereby
increase host fitness, but few such functions have as yet been discovered (Allison. 2007).
Future experimental and modelling work may shed light on these questions.

Given appropriate data, there is also plenty of scope for further investigations into
the impact of environmental conditions on both individual cells and populations of Stx
lysogens. In particular, this thesis has considered seperately the influence of nutrient
level and temperature on lysogen stability indirectly (i.e. via their influence on the host
growth rate), but it would be interesting to study their combined effect - for example.
what happens if an increase in temperature is accompanicd by a decrease in nutrient
level. Experimentally determining the E. coli growth rate at different nutrient levels
and temperatures (i.c. extending the work of Bremer and Dennis (1996)) would enable
a preliminary investigation of this question.

There is currently a shortage of experimental data relating to Stx phages, and
therefore much of the modelling work in this thesis has relied on knowledge of phage
lambda. In the future, the binding energies and other parameters involved in the Stx

molecular switch will be determined, and other differences between the Stx and lambda
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switches will enmerge besides those considered in this thesis - for example. the function
of the anti-repressor gene in the Stx phage 21, (Fogg ot al. 2007). As knowledge of the
Stx switch increases there will be an opportunity for revisiting the models considered
in this thesis in order to achieve a closer correspondence with reality.

New Stx strains continue to be discovered regularly and outbreaks of Stx-mediated
disease continue to occur (Allison. 2007). Theoretical work. such as that presented
in this thesis, represent an important contribution in determining how these phages
interact with their hosts in cellular, ecological and evolutionary time; this thereby con-
tributes to a better understanding of the evolution of phage strains with consequences

for limiting the spread of disease among humans.
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