
Mathcrnatical Modelling of Phage Dynamics 

Thesis submitted in accordance with the requirements of 
the University of Liverpool for the degree of Doctor in Philosophy 

by 

Thomas W. Evans 

April 2009 



Abstract 

Shiga toxin-converting (Stx) phages are viruses of the bacterium E.~rherichia coli. 

TI1('), are 'temperate' which means that they may replicate either via the lytic or the 

lysogenic pathway. A molecular switch determines which of the two pathways is se­

lected. Following lysis of the host cell, toxin molecules are relea.'led which can cause 

poteBtially fatal diseases in humans. 

Three different timescales are considered: cellular time, ecological time and evo­

lutionary time. In ecological time, a population dynamical model is used to derive 

conditions under which virulent phages (Le. phages which are only able to replicate 

lytically) can coexist with temperate phages, and conditions when temperate phages 

can invade a population of virulent phages and vice versa. The outcome of competition 

between temperate and virulent phage strains depends on the model parameter values, 

in particular the relative adsorption rates and burst sizes of the two strains, and also 

the probabilit.Y of lysogeny aBd the induction rate of the temperate phages. 

The population dynamical model theu forms the ba.'lis for modelling the evolution of 

temperate phages, using an adaptive dynamics approach. Two key parameters relating 

to the telnperate phage population (namely the probability of lysogeny and the lysogen 

iuductiou rate) are allowed to evolve over time. The adaptive dyuamics analysis is 

used to identify evolutionary singularities which evolution is either directed towards 

or away from. It is shown that attractor and r('pellor singularities do arise. However, 

evolutiouary branching doel') not occur within this framework. 

At the cellular level, molecular models are used to consider three problems. Firstly, 

the stability of Stx lysogens and lysogens of the related phage lambda is modelled 

aud compared. The modelling results show that certaiu known differences between the 

molecular switches of Stx and lambda phages can account for the lower stability of 

certain Stx phages. 

The same model is also used to determine the impact of selected environmental 

factors (nutrient level and temperature) on lysogen stability. An increase in nutrient 

level or temperature will increase the growth rate of the host cell, which tends to 

increase the stability of the lysogen. However, it is found that there are circulllstances 



in which increa.<;es in nutrient level or temperature can result in a decrease ill lysogen 

stahility. 

Finally, a stochastic modelling approach is used to compare the probability of 

lysogeny in Stx and lambda phages. The results show that a weaker binding energy at 

the molecular switch in Stx phages leads to a lower probability of lysogeny, and hence 

a higher rate of toxin release. 
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Chapter 1 

Background 

1.1 Introduction to phages 

Bacteriophages (also knuwn as phages) arc viruses which illfect bacteria. ThC'y 

were discovered illdependcntly by t.he bacteriologists Frederick Twurt (1915) and Felix 

d'llerelle (1917). D'llerelle coined the name bacteriophage, which means 'bacteria­

eater' (the Greek word ¢0'YfU/ - p/tagein -.is the verb 'to eat'). 

A typical phage consists of 11 head, which cont ains the genctic material, and a tail. 

Bacterial infection begins when the phage tail attaches itself to the outer cell wall of the 

bacteria, a process known as adsorption. The phage genome (a molecule of either DNA 

or RNA, depending on the phage type) then passes through the tliil and is inserted into 

the bacterial cell. There are then two possible pathways by which the infection may 

subsequently proceed, known as the lytic and lysogenic pathways. 

The lytic pathway involves the construction of many copies of the original phage, 

followed by the bursting open (lysis) of the host cell and the relea.'>e of the new phage 

particles; in this case the host is destroyed. In a lysogenic infection, the phage genome 

is inserted into the bacterinl gmlOIIle (and is then known as a prophage). In this case 

the host eell survives and is known as a. lysogen. Following llofIlIal cell divisioll of the 

host, the two daughter cells each contain a copy of the prophage within their genomes. 

Lysogens are geuerally immune to superinfeet iou by phages of the same strain as the 

resident prophage. 

Phage strains may be either virulent or temperate. A viruleut phage is only capable 

of replicating itself via the lytic pathway, while temperate phages are capable of both 

lytic and lysogenic reproduction. A temperate phage which initially forms a lysogen 

\ .... ith its host may later initiate the lytic cyde via a process known a..o.; induction. Gnp 

of the most extensively studied temperate phages is lambda (A) phage, a virus of 

Escherichia coli (E. coli) first isolated by Esther Lederberg (1951). The mechanisms 

by which phage lambda selects betweell the lytic and lysogenic pathways, and by which 
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it maintains the lysogenic state, have bf'en determined at the level of individual gf'nes 

and proteins (Pta-.hnC', 1986). 

1.2 Stx phages 

Shiga toxin-producing E. coli (STEC), and in particular the 0157:H7 serotype. are 

well known human pathogens. The STEC 0157:H7 serotype was discoven'd to he a 

foodbol'nc' pathog(~n in HlR2, when it wal-i idrntifiC'ci as til(' CHnse of all outbreak of 

hemorrhagic colitis in Oregon aud Michigan ill the U.S.A. (Karmali et al .. 1983: Riley 

et al., 1983). Since thell, it has been associated with further outbreaks of helllorrhagic 

colitis and other diseas('s, including hemolytic Ul'('rnic s.Ylldrome (HuS). which can be 

fatal ill humans. For example, E. coli 01.')7:H7 infections occurred in primary schools 

in .Japau in 1 !)!)(j and 1!)!)8, affecting OVf'r G,OOO childr('n and resulting in t\\'o deat hs 

from lIUS (Watarai et al., 1998). Healthy cattle constitute a lllajor l'('sprvoir of STEC, 

aud infection in hUlllans is of tell the result of the contamination of food or water by 

lllanure (Gyles, 2007). 

The major virulence factors of STEC 1U'e Shiga t.oxin 1 (St.x1) and Shiga toxin 2 

(Stx2). The genome sequence of Stx1 is almost iJl'Utical to that of the S. dysenieriae 

toxin, while there is a greater degree of diversity in the sequence of Stx2. The sequence 

identity of some Stx2 variants to the S. dysenteriae toxin is only. 60% (Allison, 2007). 

The abilit.y of E. coli to produce Shiga toxins is conferred by temperate lambdoid phages 

known a" Shiga toxin-converting (Stx) phages. The term 'lambdoid' signifies that th(~sc 

phages share a similar genome structure and life history with phage lambda (Ptashne, 

20(4). Each Stx phage encodes only one Shiga toxin, which is either of type Stx1 or 

Stx2 (Allison. 2(07); for example, the strains known a.s 933W and H-19B encode Stx2 

and Stx1 respectively. 

It, has been reported that freely existing Stx phages persist in the environment (es­

pecially soil and water) more successfully than their bacterial hosts. and also that they 

are lllore resistant to chlorination, heat treatlllent aBd compostillg processes (1\1 ulliesa 

et al, 1999; Johanes/·;en ct al 2005), thus promoting the snrvival of six genes. In six 

river water studies, it wa.'l found that over a one week period the numbers of E. coli 

cells decreased between 2 and 3 log units while the IlIullhers of free Stx phages de­

creased between 1 and 2 log units (Mullicsn pt ai, 1999). Free Stx phages may begin 

the infectioll process as soon as a suitable host cell is ellcollntered. 

An E. coli cell which has been infected by an Stx phage will only release Shiga toxius 

when lysis occurs. Thus, if the lysogenie pathway is selected there will be no release 

of toxins initially. However, if the lysogen is later induced (i.e. the lytic pathwa.v is 

initiated), then toxins will be released when the host. cell is lysed. Thus, t.he proportioll 
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of infectious which result iu lysogeny (the ·prohabilit.y of lysoge1l,V'). a1ld the rate at 

which lysogeus are induced (the 'induction rate'), have all important impact 011 the 

rate at which Shiga toxins are released into tht:> environlllPlIt. Studies have showlI that 

lysogens of 933W and H19-13 are subject to higher rates of induction than lambda 

lysogens (Livny and Friedman, 2(04). In SLx phages, a genetic switch similar to that 

of phage lambda determines whether the lytic or lysogenic pathway is selected. 

U sing models at both the popula.tion and the lllolecular levels, this thesis investi­

gates sOllie of the factors which iufluence the probability uf lysogeny <Iud the induction 

rate of Stx phages over t.hr~~e different tirnescales: cellular time (Chapters 4. ;) and 6), 

ecological time (Chapter 2) and evolutionary time (Chapter 3). Over cellular tillie, the 

levels of key regulatory proteins within a single infected host cell are modelled, while 

populations of bacteria and phages and their interactions are considered in ecological 

time. Over evolutionary time, t.he evolution of characteristics within a phage popula­

tion is modelled. 'flip following sections introduce t.he main ma.themat.ical tedllliqlles 

which will be used, with the help of some examp!cs, bcginlling with a consi(kration of 

populatioll dynamics. 

1.3 Population Dynamics of Bacteria and Virulent Phages 

In the Malthusian growth model, named after Thomas Malthus (1766-1834). the 

siw of a population at time t can be expressed as 

B(t) = Boert 

where Bo is the initial population size and r is a. constant known B .. " the growth rate. 

Difl'erentiating with n~spect t.o t, we obtain 

B'(I) = rBoe'" = rB{f) 

so that the rate at which the populat.ion size increases is proportional to the current 

population size. This is also known as exponential growth. 

Exponential growth of a population ca.nnot continue ind('finitel~' sillce till' supply of 

resources needed for growt.h, snch H.'I food, is limited. In the logistic model of population 

growth (Verhulst., 1838) there is all initial period of (approxilllately) exponential growt.h, 

hilt over time the growth slows down and eventually stops altogether. This model is 

given by the following first-order differential equation: 

dB B 
- = rB(l--) 
dt C 
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where rand C (the 'carrying capacity') an! constants. This lIlodel has two stm<iy 

states or equilihria (ulJtaillcd hy Sl'ttiug th(' ahove equation equal to zero): J3j = 0 and 

112 = c. 
:\ ovick and Szilard (1950) dl'veloped a device kuown a.s a chelllostat \\" hich ilia\" bE' 

used to maintain It bacterial population at 11 steady state. The bacteria are held in a 

container calkd the 'growth tube'. A supply of nutricnts flows into the growth tube 

from a. storage tank at a rate w. Bacteria and unused nutrient also flow out of the 

growth tubl' at a rate of w i":iU that the allluullt of fluid in t he tube relJlains n)\lstaut. 

The nutrient contains high ~:oncentrations of all but one of the growth factors lleeded by 

the ba.cteria for growth. The single exception is the controlling growth factor. whuse 

concentration is relatively low. The conccntration of the controlling growth factor 

within the nutrient will determine t.he concentration of bacteria at the steady state. 

The following expression was proposed by Monod (1!J49) for the per capita bacterial 

growth rate (V,) in the presence of a limiting nutrient or n'source (R): 

where l' is the maxilllum growth rate and k is the llutricnt concentration at which the 

population grows at half of the maximulll rate. This rnodel will appear in the chemostat 

models of phage and bacteria interactions discussed lat.er on. 

1.3.1 A model of bacteria and virulent phages 

Camphell (1961) modelled populations of virulent phages (V) and their bacterial 

hosts (B) in a ('hemosta.t as follows: 

dB 
fit 
dV 

dt 

B 
= rB(I-

C
)-wB-6BV (1.1 ) 

= 66B(t -1)V(t -I) - ISBV - k~,V - wV (1.2) 

Here the normal growth of the bact.eria is assumed to be logist ic with growth rate rand 

carrying capa.cit.y C. The rate at which bacteria are infected by phages, J, is knowll a'l 

the adsorption rate. The burst size /1 is the number of Hew phages which are relea-;ed 

following lysis of the host cell. The chelllostat. flow rat.e is denoted by w. Phages are 

spont.aneously deactiveated at a rate of kF . The time delay hetween the initial infection 

of a cell and the relea."le of Hew phage particles is denoted by I, and the tenus B( t _. I) 

and V(t - l) a.re the va1uoH of Band -y' at t.ime t - I. 

Ey set.ting (1.1) and (1.2) equal to zero, wit.h B(I - I)V(t - I) = BV, Campbell 

(1961) obtained four possible equilibria: 
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(i) D=O,\>=O 

(ii) iJ = 0, ~, = \'0 (ill till' special (,Hl'il' kv = :..J = 0) 

(iii) ~'= (J.ll = C (1.~ 7) 
A k'v + w·, r [, ( w) k\' + w ] 

( i v ) n = 8 Vi _ I)'\- = C 8 C 1 - -:;:~ is C3 - 1) ( 1.3) 

Givpn a set of snch equilibria, it is uatural to ask UlHkr what. couditions ('aeh ('<juilib­

rium is feasible (i.e. II and V are both llou~uegative) and stable (i.e. giwn a small 

perturbation to the system at equilibrium. the systelll will return to the origiual equi­

librium). The feasibility conditions for the four equilibria m-e a.s follows: 

(i) Always feasible 

(ii) Feasible provided Vi) > 0 

(iii) Fea .. ,ible provided wlr < 1 

(iv) Feasible provided /i > 1 and Gel (; - 1)(1 - v)lr) 2: k\, + ",-' 

The stability of an equilibrium can be determined from the eigenvalues of the .Ja­

cobian Illatrix. Iu order to silllplify the analysis Wl' cau ignore t.he time delay hetween 

iufectioll and lysis (i.e. set 1 = 0 in (1.1) and (1.2) so that B(t - I)V(t - I) = BV); 

then the .Jacobian is given by: 

_ ('r-2r8 IG-W-<5V -<58 ) 
.J - <5V(/3 -- 1) <5Be8 - 1) - kv - w . 

The stability conditions are obtained by requiring the eigenvalues of the .Jacobian to 

be negative. For the equilibria (i) to (iii), these conditions turn out to be: 

(i) kF + w > () and r < w 

(ii) kv -I- w > () and Vo > (1' - w)/6 (which t:ClllllOt he satisfied, siucc kF = w = 0 

for this equilibrium) 

(iii) r > wand 8C(Br + w) > (t5;jCw + 8Cl' + k",r + wr) 

The stability conditions for the fourth equilibrium an' rather lengthy and are tht'refore 

not repeated here, 

Another question we can ask is whether it is possihle for lllutant strains of bfu~teria 

to invade a stahle equilihrium of type (iv), consisting of a l'l'sident bacterial strain and 
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a resident phage strain. Lf't 8 J and V he Lll<' resid(~llt strains, and let 8'2 represent a 

lIlutant. bncterial straill. Let strains HI and H'2 1)(' subjC'ct to different adsorption rates 

(61 and 62 respectively) aud growth rates (rl and r'l. respe('tivel~·). Consider a slllall 

llumber of invadillg bacterial cdls frolll B2 . U sillg (1.1). we ('an write down t he rate at 

which this mutant populat.ion will grow as follows: 

(1.4 ) 

where fh (> 0) and ~T (> Q) are given by (1.3). If the above expression is greater thllll 

zero, then the mutant.s will be ablc to invade. 

Similarly, suppose that. B and VI are the rcsicknt strains, and that it small number 

of mutant phages from strain V2 emerge in the population. If VI and V2 arc subject to 

different deactivatiun rates (k\!l and kV2 ) and have different blll'st sizes (81 and fh). 
then using (1.2) the rate at which the mutant population will grow is given by: 

(1.5 ) 

where i3 (> 0) is given by the expression in (1.3). If the above quantity is positive, 

then the lUutant phages can invade. 

1.3.2 A model of resources, bacteria and virulent phages 

Levin ct. al (1977) present a model of virulent phages (\l) and bacteria (B) which 

includes a term representillg the ava.ilability of resources (R) required by the bacte­

ria. Another term, Bv , represents infected bacteria which have not yet been lysed. 

The model allows for multiple types of each populatioll, but with one resource, one 

bacterium and one phage it reduces to: 

dR 
w(Ro - R) - ¢(R)(8 + Bv) = 

dt 
( 1.6) 

dB 
B¢(R)/en - wB - c5BV 

dt 
( 1.7) 

dB/.' 
c5HV - wHIl - e-w1 c5H(t -1)V(t - I) 

dt 
(1.8) 

dV 
[Jc··wI 6B(t -- I)V(t l) oBV = wV 

dt 
( 1.9) 

Here ¢ is the bacterial growth function (not specified), and its value depeuds on the 

availability of I'('SOIll'C(,S. RI'SOlIl'CeS are assumed to flow illto the habitat from a reservoir 

at a rate w; unused resources also flow out of the habitat at tht' same rate w. The 
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concentration of resources in til(' reservoir is denoted by Ro. The alllount of n'sollrccs 

which a hacterium must COllSUllle in order to replicate (i.e. divide into two daughter 

cells) is f'I3, auel the other parameters are the adsorpt iOIl rat (' (6) alld t he burst size 

U:I) . 
This model formed the ba:.,is for later work by Stewart auc! IA'viu (1984) ill which 

time delays betwceu infectiou and lysis arc ignon'd (hCI1CC ncitlH'r the B,. population 

nor the parameter I appear), hut populations of temperate phages and their Iysogens 

are introduced; this later model will be Hualysed in detail in Chapter 2. The following 

sectiou illustrates how a population dyuamieal model call be used to Illodel e\'olution 

within the framework of adaptive dyna.mics, which is the subject of Chapter 3. 

1.4 Adaptive Dynamics 

The theory of Adaptive Dynamics (Gerit"- el aI, 1998) is cOllccrucd with the evolu­

tion of a population whose individuals are subject to small lUutations. Suppose that 

there is a resident population of identical individuals which reproduce asexually, such 

that offspring are identical to the parent. We are iuterested in the evolution of a par­

ticular one-dimensional trait or strategy. Initially. the resident population is assumed 

to have reached a locally stable equilibrium (till' delllographic att!'actor) , and so all 

individuals have the same strat.egy, denoted by x. 

The long-il.>rm expouential growth rate of the population i"s denoted by r(.r, Er ), 

where Hr is the environment given t.hat all individuals follow strategy 1.'. At the demo­

graphic at tractor , we have r(.r, E J;) = O. 

Now suppose t.hat the population is subject to lllutations, so that an offspring 

may be born with a diff('f('nt st.rategy to its parc'nt.. \V(' a.<;sllme that such mutations are 

small and infrequent, and t.herefore the effect on t.he overall population will be negligible, 

initially. If a particular lUutat.ion represents an improvcmcnt in fitness compared to til(' 

resident strategy, then this mutant strategy lllay begin to spread within the population. 

Suppose that. a sIllall number of mutants emerge with strategy y. At this stage, 

the predoIllinant populat.ion behaviour is still determined by the resident strategy x, 

and so the lllutant fitness fund ion call be written H.'l 

If s;r(Y) < 0 then the mutant population will simply die out. If sAy) > 0, then 

the small number of mutants may st.ill die out. owing to random extinctiom;; however, 

there is also the possibility that the mut.ant population will begin to grow. If 8;r(Y) > 0 

and ,l;y(:r) < 0, t.hPll once t.he mutant populat.ion becomes large enough. the resident 
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population will not be able to recover and will ewntually be replaced b.y the ll111tunt 

population. On the other hand. if both .... xCy) and .';y(.r) are positive then the two 

populatiolls may coexist. 

Since Ulutatiolls are assumed to be small, we can writp down the following 

lilwar <tppl'llXilllati(Jll of til<' J11lltaut fitJl<'ss: 

8.1'(.1]) = 8.r (:r) + D(:r)(y - :r) 

where D(1;) is the local fitness gradient, given by 

D(1:) = iJ8.,c(Y) I 
ay y=,x 

We know that s,r(x) = ''(x, Ex) = 0, and so it is the sign of D(x) which 

determines whether n particular mutant lllay invade. If D(x) is positive then a mutant 

strategy :y may invade if y > :17, and it may not invade if y < .r. Similarly, if D(.1:) is 

negative then a mutant strategy y will only be able to invade if y < .r. 
Evolution will proceed over time jn the direction of the local fitness gradient 

until either (i) the maximum or minimum value (1l' :r is reached, or (ii) a value of :c is 

reached at which the local fitness gradient is zero. If D(1:) = 0 then .1.' is said to be an 

'evolutionary singularity', and is denoted by x*. 

1.4.1 Pairwise invasibility plots 

Pairwifil' inva,,')ibility 1>lots (PIPs) (Christiansen and Loeschcke, 1980; Met..: et ai, 

19D2) provide a geometrical method of locating evolutionary singularities. A PIP fihows 

the regions in (.7:, y) space in which the function .';J' (!J) is positive, aud the regions where 

it is negative. An example is shown in Figure 1.1. 

For a given resident strategy, 1:1 say, we can see which mutant strategies lllay 

invade by drawing a vertical line through Xl. Those pa.rts of the line which fall ill 

a region of the PIP labelled '+' indicate mutant stra.tegies with positive fitness, and 

therefore these mutants are capable of invading. 

On the principal diagonal of a PIP the mutant and resident strategies are 

the same, and so t.he mutant fitness is zero along this line. The sign of the local 

fitness function can be deduced from the pattern of signs around the principal diagonal. 

Consider a particular point on the principal diagonal, (Xl, xd, and suppose that there 

is a '+' above this point and a '-' below. In this case, t.he mutant fitness is increasing 

as y increases and therefore the sign of D(J.:1) is positive. Similarly, for a point on the 

prilleipal diagonal with a '-' above and a '+' below, the sign of the local fitness gradient 

will be negative. 
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Figure 1.1: An l'xl-unple of a Pairwise Illva.<;ibility Plot. The horizontal axis correspollds 
to the resident strategy (J;) and the vertical axis corresponds to the mutaut strategy 
(y). In each region of the plot, the sign of t.he mutant fitness function is iudicated. 

1.4.2 Properties of evolutionary singularities 

A point at which the principal diagonai in the PIP intersects with another 

line along which 8x (Y) = 0 corresponds to an evolutionary singularity, x*. At the point 

(:r*, ;r*) on the principal diagonal, the signs above and below ar~ the same (i.e. both 

positive or both negative) and so the value of D(:I:*) must be zero. Iu other words, 

at a. siugularity x* the mutant. fitness function reaches either a local maximum or a 

local minimulll value; the pa.ttern of signs arouud (x*, x*) indicates which of these 

possibilities is the case, as described below. 

If the regions above and below the point (x*, x·) are labelled '-' in the PIP, 

then we know that 8".(y) as a function of'y reaches a local maximulll at the singularity, 

and therefore the second-order derivative of s:z.(y) with respect to y rnust be negative: 

cPSX(Y) I 
.. ) 2 < 0 
(jy y=x=x' 

(1.10) 

In this case any nearby mutant will have 10wE'r fitness than the singularity .1'*, and ~r* 

is said to be ES-sta.ble (ESS; Maynard Smith and Price, 1973). Thus a nearby mutant 

cannot invade an ESS singularity, and once such a singularity has been reached no 

further evolutionary change is possible. 

The singularity :r* is convergence-stable (CS; Eshd, 1983; Christiansen, 1991) 

if a nearby resident population can he invaded by a mutant which is even closer to 

the singularity. If there is a neighbourhood of ;r* such that 8 x {Y) > 0 for all .1' and y 
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satisfying either x < y < x' or :r* < y < .r, theu .r' is CS. On t.he PIP tlll'r(' will be 

a. '+' above and a '-' below the leading diagonal for J: < lJ < x', and a '-' above a.nd 

it '+' below the leading diagonal for :.v' < y < .r. Thus evolution will proceed towards 

the singularity. 

If 1" is es, then the sign of D(:r) changes from positive to Jll'gative at this 

point, i.e. : 

dD(l:) I 

d:1: Ij=.r=:". 

(1.11) 

l;sing t.he following rl'lationship (Geri!.z 01 aI, 1998) 

.:2 () • :2 . 2 rl R~ Y rl Rz(y) rl sx(y) 
'J ') + 2 'J ') + ,- ,) = 0 ( :r ( .Te y d;tr 

we can re-writ.e the CS condition as: 

r)2.Q:r;Y) I > fJ
2.;z;Y) I 

8:r. y=x ( y y=x=x· 

Given tIl(' definitions of the ESS and CS properties, we are now able to dis­

tinguish bet.ween different. types of evolutionary singula.rity. 

1.4.3 Evolutionary outcomes 

The properties of ESS .and CS enable us to identify four types of singularity, namely: 

attractors, branching points, repe11ors, and 'Garden of Eden' points. 

An at\,mct.or is a singularity which is both ESS and es. Evolution is directed 

towards an a.ttractor, and onee the attractor is reached no further evolutionmy change 

is possible. Thus at\.ra.etors are assoeiated with evolution towards intermediate values 

of the evolving parameter 

Branching points are CS but not ESS. Evolution proceeds towards a branching 

point, but once this point. is reached it is possible for nearby lUut.ant.s to invade. This 

may ll'ad to evolutionary branchin)1; and coexistence of diffc'rent strains. 

Repe110rs are neither ESS nor es. If the resident population is at or close to a 

repellor, evolution will be directed away from this point. Repellors are associated with 

evolution towards extreme values of the evolving paramet.er. 

'Garden of Eden' point.s are ESS but not es. These are strategies which are 

unbea.table, hut. which canllot be reached from any other point via small mutations. 
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1.4.4 An example of the use of adaptive dynamics 

As It brief and novel example we can consider the evolution of a hacterial population 

in tJH' presence' of a fix!'d (i.e'. non-evolving) strain of virulent phages. To do this. WE' 

cau return to the Cambell (1961) Illodel of bacteria aud virulent phages givell by (1.1) 

and (1.2), with the as!->umption of zero time delays (i.e. l = 0 and B(t-l)\/(t-l) = B\/). 

R('sidel1t and lllutant bacterial strains are denoted by ill and Ih. and are subj('ct to 

different adsorption rates (J 1 and ( 2 ) and growth mtes (1"1 and 1"2). In this case the 

fitness function is giV<'Il by (1.4), i.e. 

(1.12) 

where J: denotl's the resident parameters (Tl and 6d and y denotes the llIutant pa­

rameters (r2 and ( 2 ). Now suppose tha(. there is a trade-off relationship 1 between 

the parameters 8 and r. such that r = 1(J) (where f is monotonic increasiug). This 

repf(~ents the a..'lsumption that if resistance to infection increases (i.e. the value of the 

parameter 8 decrea..'les), thl'n the ahility of thl' hact.eria to take in resources will he 

impaired (and so the value of r will also decrea..'le). \Ve can re-write the fitness function 

as: 

(1.13) 

where x now denotes (h and y, 82. At an evolutionary singularity 61 = 62 = 6*, we have 

f):;.",(y) I = f'(6*) (1 - B(O*)) - (1(6*) = 0 
Jy * C 

(1.14) 

So the evolutionary singularities are the values of J at which the slope of the tracle­

ott" flllWt.ioll is eqllal to \;' C / (C - i1). Note that. for positive values of iJ. the value 

of (C - B) lUust be positive (otherwise the right hand side of (1.1) will not be equal 

to zero). Once the singularities have been identified, thf'y can be cla..<;sified according 

to whet.lj(~r they satisfy the ESS aud CS conditiolls. Differentiating 8;r(.I1) twice with 

respect to the mutant: 

lP f; (Y) 
,LX. = 1"(02)(1 - fit/C) 
oy2 

(1.15 ) 

Since C > B, the sign of this quantity depends only on the sign of I" (<52), Therefore 

(using (1.10)), a singularity 6* is ESS if I" (<5*) is negative. 
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Differt'ntiating s,,/y) with respect t.o t.he lllll tant and again with respect t () the 

resident yields, and evaluating the reslllt at a singularity 6* yields: 

f)
2

SX(Y) I 
()ylh: • 

Here we have a'>sullled that the resident eqllilibrilllu inludt's non-zcro populations of 

both bacteria and phages, so that B is given by (l.~l). Then the CS condition is satisfied 
')2 ) 2 ) 

if the sign of (.)"":)(Y + n .8)rJY is negative (frolll (1.11)). Once the ES <llld CS cOllditions 
. ( J'( 11 ( !J 

have been detennined it is possible to clal>sify the singularity as a repellor. attractor. 

branching point or 'Gar'der; of Eden'. 

The above example considers t.he evolution of t.he host bacteriulll in the presence of 

vil'\lleut phages. In Chapter 3 the evolution of temperate phage strains (in the presence 

of a singl(~ fixed bacterial population) will be modelled llsing adaptive dynamics. which 

is a more complicated problein in the sense that the presence of lysogeus be allowed 

for. in addition to the bacterial and phage populations. 

The following section introduces the topic of molecular level modelling of phage 

infections, which is the approach used in Chapters 4, 5 and 6. 

1.5 The Larnbda Molecular Switch 

A genetic switch enables phage lambda to select between lysis and lysogeny, and 

also to exit the lysogenic state via induction. A brief description of the components of 

the lambda switch is given below, and further details can be found in the relevant later 

chapters. 

The switch centres m-ound the right operator, OR. on the lambda genome. This 

operator includes three binding sites (labelled OR!. OR2 and OR3) and is situated 

between the genes cI and em. These genes code for the regulatory proteins CI (known 

a'> t.he repressor) and Cro. Dimers of CI and Cro (i.e. Cl2 and Cro2 molecules) can 

bind to the OR binding sites, and thus regulate the expression of the two genes. For 

example, with molecules of Ch hound to OR! and OR2 (and OR3 unbound). cI is on 

and cm is olr. This means that a molecule of the eu;t.yme RNAP can transcribe the 

cl gene to produce a rnRN A tra.nscript which can then be translated by a ribosome to 

produce a molecule of CI. Similarly, with a Cro2 molecule bound to OR3 (and ORI and 

0R2 unbound) cl is off and em is on, leading to the synthesis (via transcription and 

translation) of Cro molecules, 

The balance between the concentrations of CI and Cro within the cell determines 

the outcome of the initial decision between lysis a.nd lysogeny, and also the rate at 

which lysogens undergo induction. Following an initial infection event, a high level of 
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d expression and a low level of C'1'O expression will lead to lysogeny; low d expression 

and high em expression will lead t.o lysis. 

III a lysogen there is a relatively high concentration of Cb, while the COllcf'ntration 

of Cr02 is alltlost nil. If the Cb concentration falls, this will lead to the eTO gene being 

expressed. If synthesis of Cr02 proceeds at. It high enough rate, then this will lead to a 

further reduct.ion in the level of CI2 , since repression of cI will occur more frequently. 

Santillan and rv'lackey (2004) presented the following delay differential pquation 

model of t.he lambda switch: 

d[Mcl] 
dt 

d[MCI'o] 
lit 

d[C'rr] 
lit 

cI[CTOT] 
dt 

= k~II[()Rlfk1l1([CI2]TM' [Cro2]TM) + k;'I[()R].fl?AI([CI2k~/, [C ro2]T.\/) 

- ((111 + p)[Mr:d 

1.:'1'0[0 R]f R([C'I2JTM' [C'1'02]T.~1) bAI + 1') [Aler"J 

where !lIc! and !lIC1' 0 are the concentratioml of the mRNA transcripts of the genes cI and 

em respectively, and CIT and eTOT are the tota; concentrations (i.e. monomers plus 

dimers) of the proteins CI and Cro. The remaining terms in the model are described 

in Chapter 4. 

In Chapter 4 the above model is used to find equilibria corresponding to the lyso­

genic state, and the leading eigenvalue of each equilibria is used as a measure of its 

stability. The model is then adjusted to allow for known characteristics of the molecular 

switch in Stx phages, so that the stability of lambda and Stx lysogens can be compared. 

The ability of a, prophage to initia.te the lytic cycle provides a means of escape from 

a hOHt whose surviva.l is threatened by adverse environmental conditions. such as the 

prl'sence of ultra-violet light, low resource levels, or extreme telllperatures. Bremer and 

Denni::; (1996) presented data on the growth rate and chemical composition of E. coli at 

ditfermlt llutri(~llt. h'vds aud telllperatnres. By incorpom.ting this data into the Santillan 

aJl(l Mackey (2004) model, Chapter 5 investigates the impact of some environmental 

conditions on lysogen stability. 

Arkin et al (1998) developed a stochastic model of the initial decision between ly­

sis and lysogeny of phage larnbda. This model used the Gillespie (1977) algorithm to 

simulate reaction events such as protein dimerizatioIl, dissociatioll and degradation. III 

Chapter 6, this model is used as the basis for comparing the probability of lysogeny 

in Stx and lambda phages. In order to speed up the simulation process, the algorithm 

used incorporates a simplification proposed by Gibson and Bruck (2000) whereby tran-
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scription of gones and trallslation of lllHN A molecules an~ lllodl'llod as single reaction 

PWlltS, rather than as serips of reactiolls representing lllOVelllellt of the CllZyIIlf! (in the 

case of transcriptioll) or ribosome (in the case of trallslation) frolll one nucleotide to 

the next. 

1.6 Thesis Outline 

To surmnarize, this thesis considers the dynamics of phage illfectiolls over ('ellular, 

ecological, and evolutionary timescales. In the following Chapter an existing populatioll 

dynamical Ulodel of bacteria and phages (Stewart and Levin, 1984) is analysed ill a 

more mathematically rigorous way than the original authors. Building on the work of 

Chapt(~r 2, the methods of Adaptive Dynamics are applied in Chapter 3 to model the 

('vol uti on of temperate phages. 

Chapt<'l' ,1 cOllsiders wh011H'r kllOWll diff('rcnccs bct.w('('U the gClletic switches of 

lambda and Stx phages can· account for the lower stability of Stx lysogens. while 

Chapter 5 is concerned with the impact on lysogen stability of environmental factors 

such as temperature and nutrient levels. The stability of lysogens containing multiple 

prophages is abo com,idered. 

Finally, Chapter 6 extends the findings in Ch.lpter 4 and uses a stocha..'ltic model 

to compare the probability of lysogeny in lambda and Stx phages. 
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Chapter 2 

The Population Dynamics of 
Temperate. and Virulent 
Bacteriophages 

Stewart and Levin (1984) developed a model of bacteriophage dynamics consist ing 

of resources (R), sensitive hacteria (8), resistant bacteria (B). lysogens (L), temperale 

phagl> (1'), ami virulent phage (V). Four sub-models of the full model exclude one 

or more of these populations. Based on a chemostat approach, resources enter at a 

rate of wHo per hour (where Ro is the resource concentration in the input reservoir), 

and the contents of the chemostat are washed out at a rate proportional to w. The 

parameter E reflects the efficiency with which cells conSllme the resource. Populations 

of lysogens, sensitive bacteria, and resistant bacteria grow at per capita rates 1fJL(R), 

(1 nS)'h(R), and (l--('l'B)'lh(R) respectively, where'lh is a monotonic increasing 

fllution of R (we generally assume that sensitive cells have a higher growth rate than 

lysogens, i.e. as < 0; clearly (1 - as) and (1 - aB) are positive). Temperate phages 

adsorb to sensitive bacteria and lysogens at rates of 6'1'81' and oTL1' respectively, where 

6'1' is a constant of proportionality. The corresponding adsorption rates for virulent 

phages are J\! SV and t5v LV. Note that lysogens can be infected and lysed by virulent 

phageH, but a temperate phage which adsorbs to a lysogen is simply lost from the 

syHtem. A proportion p of temperate phage adsorptions reHult in lysogeuy. while the 

remaining (1 - p) lead to lysis. Lysogens are induced. i.e. enter the lytic cycle, at a 

rate of i per hour, and lysogens lose their prophage and thus become sensitive bacteria 

again at a rate of ~ per hour (~ is known as the segregation rate). The temperate and 

virulent phage burst sizes are represented by the parameters tiT and Ii\' respectively. 

A hyperbolic model (Mouod, 1949) is used for thf' growth fUllction V'C 

lh(R) = l'R/(R + k) 
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where .,. is the maximum growth rate of I.YSOgClls ill Ulllilllitt'd reSO\ll'ces and k is I he 

COllccntratioll of l'CSO\ll'CCS at whil'h ('dIs grow al half of the maxim1l1ll rate. 

Given t he above definitions and aSSllll1ptiolls, the ditrerelltial equations governing 

the system are as follows: 

dR 

ell 
dL 

dt 
dS 

dt 
dB 
dt 
ell' 

elt 
dV 

cit 

= w(Ro - R) - fl/JdR)[L + (1 - (8)5' + (1 - (13)Bj 

4JL(R)L + pJ'j'8T - o\·LV - (w + 'i + 01. 

= i/3rL + /1r(1 - p)8rST - 8'j'LT - wT 

(2.0.1) 

(2.0.2) 

(2.0.3) 

(2.0.4) 

(2.0.5) 

(2.0.6) 

Following Stewart and Levin (1084) we consider four suh-models (I\Iodpls 1-4) of 

the full model, hefore addressing the full model itself. Much of the material presented 

h(,re is adapt.ed from t.heir work (note that t.he llolation used here is modified ill order 

to be consistent. with later mat.erial). For each model we ident.ify the possible equilibria, 

and then systematically carry out feasibility and stability analyses for these equilibria, 

Ilsing Maplc as necessa.ry. Thus we have extended the work of Stewart and Levin as 

far as possihle in order to provide a more complete analysis. This chapter will also lay 

the foundations for the modelling of phage evolution in Chapter 3, where the methods 

of adaptive dynamics are applied to the sub-model of temperate phages, lysogens, and 

sensitive cells (Model 2). 

2.1 Model 1. Lysogens and free phage 

The simplest model contains only resources (R) and two populations: lysogens (L) 

and free temperate phage (T). In this case the possibility of lysogens losing their 

prophages is excluded (i.e. the parameter ~ = 0), and equations (2.0.1) - (2.0.0) are 

reduced to t.he following: 

dR 
w(Ro R) (h(R)L (2.1.1) = 

dt 
dL 

'1h(R)L - iL - vJL (2.1.2) = 
cit 
dT 

ifhL - orLT - wT (2.1.3) 
dt 
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with Jacobian matrix 

- uJ- ((!,~ (R)L 

4'UR)L o 
o 

--fl,'[,(R) 
h(R)-- i-- w 

i/h - IhT 

o ) 
-bTL - w 

2.1.1 Deriving and interpreting the equilibria 

S('tting (2.1.2) ('qua! to zero, w(' find that f'ithcr t = 0 or 

(2.1.4) 

at equilibrium. If L = 0, then (2.1.3) implies that t = 0, and (2.1.1) implies that 

R = Ro. On the other hand, ifh(R) = (i+w) then R = 4'Zl(i+w). Then from (2.1.1): 

, w(Ro - R) w Ro - R 
L= ~ = -. -.---

t'I/'L(R) "/, + w f 
(2.1.5) 

and from (2.1.3): 

(2.1.6) 

Thus there are two types of equilibria for :tvlodel 1: 

E1 Resources only - (Ro, 0, 0) 

E2 Resources, lysogens and temperate phages - (R, L, T) 

2.1.2 Feasibility and stability of the equilibria 

Equilibrium E1 (i.e. R = Ro, L = 0, T = 0) corresponds t.o extinction of the 

lysogen and phage populations. The equilibrium is clearly fea.'lible because Ro is a 

positive constant. The .Jacobian mat.rix at this point is 

( 

-w -f.1h(Ro) 
J(E1) = () v'dRo) - i - w 

o zfh 
with eigenvalues -w (repeated) and 4'dRo) - i -w. Since w is always positive, it follows 

that the equilibrium will be stable provided that 1/JL(Ro) < i + w, i.e. the growth rate 
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of till' lysogl'ns is less Lllall thl' mtl' at which they nrc lost owillg to illduction <111d 

being wi\,...,hcd 011t of the systelll. If this is the case tlWll the lysogPIl population cannot 

survive. and if there are 110 lysogells then t.he phage population will also be eliminated. 

:'.'ow we turn to Equilibrium E2. From (2.1.5), this equilibrium is feasihle if and 

only if 

(2.1.7) 

(since '1/)1- is lllonot.onic illcreasing). Using (2.1.4), we can rewrite this feasihility cOllcli­

tion as 'l/'L(Ro) ~ i + w. 

The Jacobian for E2 is 

.I(E2) ~ ( 
w -. fV'~(Jl)L 
V'~(R)L 

o 

--f(i + '".!) 
o 

i/ly - r5TT 

\Ve can read off one of the eigenvalues as -81'L- w, which is negative provided that 

E2 is feasible. Now consider the top left 2x2 submatrix of J(E2). The remaiuing two 

eigenvalues will have Ilegative real parts provided that the subrnatrix has a positive 

deterlllinant. alld negative trace, and this is the clI:,e provided that L > O. Thus, if E2 

is fef\,...,ible then it nmst also be stable. 

Figure 2.1 provides an example dynamical simulation of both types of equilibria 

for l10del 1. This simulation was obtained by choosing a set of parameter values and 

the initial sizes of the phage and lysogen populatioIl!i, and then numerically integrating 

tlw modd diff('l'('lltial ('qltatiollS in order to ul'tefIllilw how the population sizes vary 

over time. The simulations for the other models in this chapter were carried out using 

the same procedure. In this example, we have 'l/JL(Ro) = rRo/(Ro + k) = 0.67 (to 2 

d.p.). The above theory shows that equilibria of type E1 are feasible and stable when 

i +w > 1/JL(Ro), and equilibria of type E2 are feasible and stable when i + w < 1/Jr(Ro). 

In Figure 2.1(A) we have i + w = 0.9 > 1/JdRo) , and the equilibria is of type E1; in 

Figure 2.1(B) we have i + w = 0.3 < 'lh(Ro) and the equilibria is of type E2. Thus the 

simulations are in agreement with the theory. 

2.2 Model 2. Temperate phage, lysogens, and sensitive 
cells 

This lllodl'l includes a population of sensitive bacteria (8), and the segregation rate 

for lysogens is strictly positive. 
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Figure 2.1: Numerical simulations for Model 1 (R=resources, L=lysogens, 
T=temperate phages). Two equilibrium types are shown:(A) Resources (R) only; (B) 
Resources, lysogens (L) and temperate phages (T). In (A) the parameter settings are 
i = 0.4 and w = 0.5, while in (B) oj = 0.1 and w = 0.2. The remaining parameter 
values (same for (A) and (B)) are: Ro = 100, E = 5 X lO-i. l' = 0.7, k = 4, J1r = 100, 
()T = 10-9

, ns = 0, ( = ° 
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dR 

dl 
dL 

w(Ro -- R) (h(R)(L + (1 -- /}s)S) 

elt 
dS 

dt 
dT 

dt 

l/JdR)L + pr5T ST - (w + i + ~)L 

-- (1 

The Jacobian matrix for this model is: 

wS 

-"-' - f?/J~,(R)L -f'«JdR) -f'l/JdR)(l - (ts) 0 
-f'l/J~JR)(l - ('(8)S 

V'L(R)L V'dR) - 'i pr51'T pr51'S 
--w - ~ 

J= 
(1 - as )v'UR)S e (1 - Ct8)wJ)R) -61'S 

-t5T T - w 

0 i/'Jr - 6T T {J1'(1 - p)61'T f'Jr(l - p)6T S 
-67'L - w 

2.2.1 Deriving and interpreting the equilibria 

(2,2.1) 

(2,2,2) 

(2,2.3) 

(2.2.4) 

I\lodel 2 ('olLtaim; the four :,;peeies R, S, L, and T, and so there are 24 potential 

types of equilibria. However, we will show that lllany of these potential equilibria are 

not feasible, irrespective of the parameter values. Other equilibria will turn out to he 

feasible provided that the parameter values satisfy certain conditions, 

First we set Equations (2.2.1) - (2.2.4) equal to zero. If we multiply the right hand 

side of (2.2.:3) by p, and add the result to the right hand side of (2.2.2), we obtain 

'lh(R)L - (w + i + OL + p(l - as)'l/J(R)S + peL - pwS = 0 (2.2.5) 

It is convenient to consider the cases L = 0 and L > 0 separately; we begin by 

looking for equilibria with L = O. In thiH case, we find from (2.2,5) that either .r, = 0 

or w = (1 - ClS)ll>L(R). If S' = 0, thelL R = Ro (from (2.2.1)) and t = 0 (from (2.2.4)). 

On the other hand if w = (1 - lY8)'l/)t,(R), then 

R = 
kw 

(1 - (ls)r - w 
(2.2.6) 
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and WI' find that 

(2.2.7) 

(from (2.2.1)) Hnd t = 0 (froIIl (2.2.3)). 

~ow we \villiook for equilihria with L > O. In this case we call use the substitutioll 

!:; = .I'L to write Equation (2.2.5) a..:; follows: 

(2.2.8) 

Since we are assuming that i is non-zero, the expression inside the large brackets in 

t he above expression must be equal to zero. This tells us that 

(2.2.9) 

and therefore 

.. ( A) W + i + (1 - p)~ + Jiw;i; 
'IjJ I R = ---'-:------,--

, 1 + p( 1 - 08 )1: 
(2.2.10) 

which implies that 4' is a monotolll' function of .1' and lies betweeu 

(2.2.11) 

alld 

~) M = w + i + (1 - p)~ (2.2.12) 

From (2.2.2) we find 

(2.2.13) 

and so 

l' = w + i + ~ - ~)L(i'l) 
p!5T i' . 

(2.2.14) 
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From (2.2.4), we have 

(2.2.15) 

a11(1 clearly 

(2.2.16) 

So for a given value ofJ'L, there is a correspondillg 1l1lique equilihrium. Using (2.2.1), 

the following relatiollship between the parameter Ro alld the equilihrium values can be 

ohtailled: 

(2.2.17) 

Thus there arc three possible types of equilibria: 

El Resources ollly - (Ro. 0, 0, 0) 

E2 Resol\l'ces and sensitive cells - (R. S. 0,0) 

E3 Resources and aU three populations - (R, ~', t, i) 

2.2.2 Feasibility and stability of the equilibria 

The equilibrium E1 (i.e. (Ro, 0, O. 0)) is clearly feasihle (sillce Ro is always positive). 

To establish its stability we can examine the Jacol>iall at El: 

( 

-w -f'I/'L(Ro) -f'l/JL(Ro)(l - O'S') 

o h(Ro) - i - w - ~ 0 
J(El) = o ~ (1 - (Xs)1/JdRo) - w 

o if3T 0 

The eigenvalues of J(El) are: (l-o'S'h"dRo)-w; 'h(Ro)-i-vJ-~; and -w (repeated). 

So El is stable provided that the following conditiolls are satisfied: 

w 
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Clearly if (1-- as) > 1, and (2.2.18) is satisfied, then (2.2.19) will also b(> satisfied. The 

analysis of the E2 equilibrium will reveal that (2.2.18) is equivalent to Ro < R(E2). 

Now we consider equilibriulll E2 (i.e. (R, S, 0, 0)). From (2.2.6) and (2.2.7), we see 

that E2 is feasible provided that 

w < (1-- os)r 
(1 -- os)" 

w < . 
1 + kj Ro 

(2.2.20) 

(2.2.21) 

Clearly if the secowi of these conditions holds. then the first condition will also hold. 

:';otl' that the second condition is equivalent to (Ro > R). 
The Jacobian lllatrix for E2 (in the order (R, 5, L, T)) is a.<; follows: 

J(E2) = 

-tV'[,(i?)(1 - os)S -tV'T,(il)(1 - O's) -flh(il) ° 
-w 

o 

(1 - 0'8)v)dR) 
-w 

o li'T,(il) - i 
-w -~ 

o o :h(1 - p)hS 
-w 

The expressions for the eigenvalues of the .1(E2) are ra.ther long and complicated. 

but we can proceed by splitting the lllatrix into two parts: intrinsic (R and 8) alld 

extrinsic (L and T). Tbe intrinsic Jacobian is 

--(1/J~(R)(1 - as)S -eV'L(l?)(1 - os) 
-w 

I(E2) = 

-w 

with eig('nvalucs 

-w (2.2.22) 

and 
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(2.2.23) 

If these eigenvalues are both neg;a.tive, thell the equilibrium is intrinsically stable. 

The extriusie J acobiau is 

E(E2) = 

with trace given by 

Tr(E(E2)) 

1/Jdi?) - i 
-u) -~ 

~jT(1 - p)Ii'j'S 
-u) 

(2.2.24) 

If the trace is positive then there must be at least one eigenvalue with a positive 

rpal part, which means that the equilibrium is extrinsically unstable and the phages 

and lysogens can invade. Even if the trace is negative the equilibrium will still be 

extrinsically unstable if the determinant, given by 

Dpt(E(E2)) = flTtJrS (V)dR) - u) - i - ~ - IJ1/JL(R) + 1JvJ + pc) 
+u) (u) + i + ~ - 1j'df~)) , 

is negative. 

For E3, we are not able to obtain simple feasibility and stability criteria. 

Figure 2.2 illustrates tlll' three types of equilibria for Modd 2. In these examples 

Wl' have 1/'L(Ro) = dfo/(flo + k) = 0.67 (to 2 d.p.). For the equilibriulll of type El 

(Figure 2.2(A)) we have "",/(1 -- O's) = 0.78 and i + w + ~ = 0.90, so that the stability 

conditions (i.('. (2.2.18) and (2.2.18)) ar(' satisfh'd. 

For the E2 equilibrium (Figure 2.2(13)), the parameter values are such that w = 0.65, 

(1 - os)r = 0.71, and (1 - 0:8)1'/(1 + k/Ro) = 0.69, aud so the feasibility conditions 

(i.e. (2.2.20) and (2.2.21)) are satisfied. The eigenvalues of the intrinsic Jacobian (ob­

tained by evaluating (2.2.22) and (2.2.23)) arc both negative, which means that the 

equilibrium is intrinsically stable. Furthermore, by evaluating (2.2.24) we find that the 

extrinsic Jacobian has a negative trace and a positive determinant, which means that 

the real parts of the eigenvalues of this matrix must be negative. Thus, the lysogells 

and phages are unable to invade the equilibrium of resources and sen!->itive bacteria. 
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By varying the parameter values (ill particular by lowering the value of vJ to 0.2), 

we are also able to obt.ain a stable equilibrium with all populations present. as shown 

ill Figure 2.2(C) 

2.3 Model 3. Temperate phage, lysogens, sensitive, and 
resistant bacteria 

The above lllodel may be extended to include a population of resistant bacteria (B) 

\\'hich are imlllune to phage infection, and whose selection coeilickllt is 013. Here, the 

rates of change of the populations are given h.v: 

dR 

dt 
dL 
dl. 

w(Ro - R) - f'lpdR)(L + (1 - 0,<,,)5 + (1 - on)B) 

dS = (1 - ns)UJdR)S - (h,ST + (L - wS 
elt 

dB 
dt 
dT 

dt 

The Jacobiall for this model is: 

w ... ('~'IJR)L (t/)L(R) . (v'dR)(l .. ns) . q)L(/?)(1 ... tlE) 

-ft/J[,(R)(l - 08)S 
-(~'~JR)(1- Cl'B)B 

,~,~. (Il) L 'l/JdR) - i p6TT 0 
-w -~ 

.1= (1 - QSh~L(R)S ~ (l - ns)v'dR) 0 
-6TT - w 

(1 - oB)~'~.(fnR 0 0 (1 - 0.8 h"d R) 
- .... ' 

0 i/h· (3-dl - P)6TT 0 
-6'1''1' 

2.3.1 Deriving and interpreting the equilibria 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

(2.3.5) 

0 

p6TS 

-6TH 

(J 

(h(l- p)6T S 
-61'1, - .... ' 

This model is very similar to the previous one. III fact, Equations (2.2.2), (2.2.3), 

and (2.2.4) are identical to (2.3.2), (2.3.3), and (2.3.5). By setting (2.3.4) equal to zero, 

we see that either B = 0 or 
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Figure 2.2: Numerical :;imulatious for Model 2 (R=resourees, L=lysogens, S=sensitive 
bactcria, T=tclllperate phages). Three equilibrium types are shown:(A) Resources 
only (w = 0.8, /h = 100, 61' = 10-9); (B) Resources ami sensitive bacteria (w = 0.65, 
/h = 50, 8']' = 10 10); (C) Resources, sensitive bacteria, lysogens aud temperate phages 
(u..' = 0.2, f1T = 100, 61' = 10-9 ). The remaining parameter values are: Ro = 100, 
f = 5 X 10-7, r = 0.7, k = 4, 0:8 = -0.02, ~ = 0.0001, i=O.1. p=O.4 

26 



(2.3.6) 

a.t equilibrium. If i3 = 0, then (2.2.1) a.nd (2.3.1) are identical; in this ca.',e, there are 

three potential equilibria a.<; described in Section 2.2.1. 

To identify the remaining equilibria for Model 3 we a.<;SUllH~ that (2.3.6) holds, and 

therefore 

A wk: 
R= . 

r(l - o:n) - W 
(2.3.7) 

As we did in Model 2, we multiply the right hand side of Equation (2.3.3) by p, and 

add the r('s111t to the right hand side of (2.3.2), and we obtain 

(2.3.8) 

(which is identical to (2.2.5)). As before, we will consider the cases L = 0 and L > 0 

separately. 

If L = 0, then (2.3.8) implies t.hat either g = 0 or w = (1 - (Xs)~)dn). If ,9 = 0, it 

follL)ws that iJ = w(Ro - R)/[f'~)dR)(1 - an)] (frorn (2.3.1)) and t = 0 (fronl (2.3.5)). 

On the other hand, if w = (1 - as)'lfJL(il) theu using (2.3.6) we must have QS = an -

but this contradicts our assumption that sensitive cells grow faster than resistant cells, 

and so this particular type of equilibrium can be discounted. 

N ow we look for equilibria with L > O. The expression for g / L for Model 3 is the 

same as in Model 2, i.e. Equation (2.2.9). Using (2.3.6), we can now write ,~'/ i as 

,9 w - (1 - CI:n)(w + i + (1 - p)O 
L wp(ns- (.I'D) 

(2.3.9) 

The expressions for T, i, S are the same as ill Model 2, i.e. Equations (2.2.14), (2.2.15), 

and (2.2.16) (remember that in these ('<Illations, .I: is used t.o denote ,~'/ L). Finally. by 

substitutiug (2.3.7) into (2.3.1) (set equa.l to 7.ero) a.nd rearranging, we obtain: 

B = (Ro- R)(1 - (1:n) - tL- t(l - QS)S 
tel - O:B) 

The list of possible equilibrium types is as follows: 
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El Re~ouree~ ouly - (Ho, 0, 0, 0, 0) 

E2 Re:;ource~ and re~i~tallt cells - (R, 0, 0, 0, B) 

E3 Resources and sensitive cells - (fl, S, 0,0,0) 

E4 Resources, sen~itive cells, lysogens and temperate phages - (R, fi, £, f, 0) 

E5 Resources and all four populations - (R., S, L, f, i3) 

2.3.2 Feasibility and stability of the equilibria 

El is clearly fea,.'!ible. The Jacohian at this equilibrium is: 

._;;.) -fV'L(Ro) -f4;dRo)(1 - os) -f4,dRll )(1 - (}:8) 0 

0 h(Ro) w ~ 0 0 0 

.1(El) = 0 c (1 - (}:8)1/JL(Ro) -;;.) 0 0 .... 

0 0 0 (1 - (13)~'L(Ro) - w 0 
0 ifh 

The eigenvalues of J(El) are: 

0 

(1 - Ci8)~'dRo) - w 

(1 - Ci8)l/JdRo) - w 

1/Jt(Ro) - w - i - ~ 

-w (twice) 

0 -w' 

(2.3.11) 

(2.3.12) 

(2.3.13) 

(2.3.14) 

Thus, El will be stable provided that (i) the growth rates of both the sensitive and 

resistant bacteria (( 1 - 0:8)1jJ d Ro) and (1 - 0: [J )~) I, (Ro) respectively) are lower than 

tIl[' flow ratl" and (ii) tIl{' p;rowth rate' of tIl[' lysop;e'ns (1j'1,(Ro)) is lower than their rate 

of loss owing to indllction. loss of prophage, and flowing out. 

E2 is feasible provided that the following conditious are satisfie'd: 

T > w/(1 - on) 

Ro> R 
(2.3.15) 

(2.3.16) 

Note that these are similar t.o the feasibility conditions for equilibriulll E2 of model 2. 

The ,Jacobian matrix for E2, in the order (R, B, S, L, 1'), is: 
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-qi)~,(1~)(1 - (\LJ){) -f1pdH)(l - (tLJ) -q"dH)(l - IlS) -ft;'L(R) 0 
-w 

(1 - (\n)1/)~(i?)i3 (1 - o;n)1!'dR) 0 o 0 
-w 

J(E2) = 
() () (1 - Qs)~}dR) o 

~~w 

0 0 0 1/'L(R) -'I 0 
-w - E, 

o o 

The eigenvalues of J (E2) are as follows: 

1/JdR)(1 -. IlS) - W 

4'dR) - w - i - E, 

(1i)L(ii) - f11)~, (R)B)( 1 - nLJ) - w 

-w (twice) 

o i/h -vJ 

(2.3.17) 

(2.3.18) 

(2.3,10) 

(2.3.20) 

and these must all be negative for the equilibrium E2 to be stable. From the first 

eigenvalue we see that the growth rate of sensitive cells must be low('r than the flow 

rate, while the second eigenvalue shows that the growth rate of lysogeus must be lower 

than the sum of the flow, induction and segregation rates. 

The E3 equilibrium is feasible provided that the following conditions are satisfied: 

r( 1 - o:s) > w 

Ro > R 

The Jacobian for E3, in the order (R, S, [3, L, '1'), is: 

J(H:3) = 

29 

(2.3.21) 

(2.3.22) 



OSf'li'~, (H)S -f~'L(i-l)(l - CIS) -u/'dH)(l - nu) -f4>dH) 0 

-fl:'~,(R)~' 
-iJ.} 

1jJ~,(R)S (l -- cts)1/JdR) 0 c -6TS 
" -o.(:i1/'~jR),~' -iJ.} 

0 0 (1 - ou)'h(R) 0 0 

-w 

0 0 0 1/JdR) - i p6]'S 
- w ~ ~ 

0 0 0 i/1T Ih(l - P)6T'~' 
-w 

To examine the stability of E3, we can look at the intrin~ic (R, S) and extrin~ic 

(n. To, T) sub-matrices of J(E3). The intrinsic Jacobian (i.e. the intersection of the 1st 

ana 2nd rows and colunms of J( E3)) has the following eigenvalues: 

-w' 

and these must both be negative for the equilibrium to be intrinsically stable. 

The extrinsic Jacobian is as follows: 

(1 - CtB)VJt{R) 
-w 

o 
E(E3) = 

o 

o 

'1h(R) - i 
-.,J - ~ 

o 

0'1'(1 - p)bTS,' 
-w 

(2.3.23) 

(2.3.24) 

The first eigenvalue is dearly (1- OB )1/'dH) -w, and if this is positive theu the resistant 

bacteria will be able to invade. To determine whether one or both of the other two 

eigenvalues have positive real parts, we call examine further sub-matrix 
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lh (R)- I PI)T'S' 

-w- ~ 

illy ?JT(l p)6T-'; 
-w 

(i.e. the intersection of the second and third rows Bud columns of E(E2). Since 

this matrix is the same as the extrinsic .Jacobian of Section 2.2.2 (Model 2, E2), the 

conditions for determining whether there is an eigenvalue with a positive real part are 

the same as in the earlier case. 

At an E4 type equilibrium of resources, sensitive bacteria, temperate phages, and 

lysogens, the Jacobian rnatrix (in the order R, S, L, T, B) is given by: 

J(E4) = 

w ("(i)~, (11-) L c~,r,(R)(l --- ns') (~)dR) 0 --c~)dR)(l LYn) 
-f4'~,(H)(1 - ns)S' 

(1 - os) lj)~,( in -~' (1 - os)1!J!,{R) -6TS 0 
61'1' w 

1/J~J(R)L p6TT ~)dR) - i p8TS' 0 
-w .-~ 

0 £h·(l - p)hi i(1T - r5Ti fh·(l - p)r5TS' 0 
-bTL - w 

0 0 0 0 (1 - on)1/JdR) 
-w 

The intrinsic section of this Jacobian is the same as the full Jacobian for Model 2 

(although the order of the variables is different). The extrinsic section of J (E4) is the 

single elelllent 

(2.3.25) 

If this qnr111tity is positive, then the resist.aut bacteria will be able to invade. 

An E5 t'<JllilibriulU includes resotll"ces and all four populations. Notice that (2.3.2), (2.3.3), 

and (2.3.5) an' identical t.o (2.2.2), (2.2.3), and (2.2.4) respectively, and this meallS that 

some of the results already ubtained for Model 2 (E3) will be useful in analysing the 

present case. 
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Suppose we hegin with all equilihrium (It t, ~', i) with 110 resistant c('lls present 

initially. and then introdnc(' a small number of resista.nt cells. As usual, we aSSUllH' 

Cts < (tH. For the resistant cells to iuvade, we must have (from (2.3.25)): 

(2.3.26) 

which implies that 

(2.3.27) 

where ·0L is the lysogenic growth rate a.t the equilibrium involving no resistant cells. 

Now we will investigate the feasibility ofE5. Following Stewart and Levin (1984), let 

(R, L. S. t, 0) be an equilibrium with no resistant cells present, and let (R, L, 5, T, B) 
be an equilibriulll involving a.ll four popula.tions. For the right hand side of (2.3.4) to 

be equal to zero we must have (since B =f. 0) 

and 

R= kw 
(1 - (}:n)" -- w 

11'L(R) = ~L = w 
1- O'n' 

Using (2.3.27), together with (2.2.11) and (2.2.12), we see that .(i'L is bounded as follows: 

W - A 

1I'm = < 'lh < 1/'L < 'I/'M = w + i + (1 - p)~ 
1- O's 

For a given value of 'J'L, we know from the analysis of Model 2 (E3) that there are 

unique values of L, 5, and T which satisfy the identical sets of equations (2.2.2), (2.2.3), (2.2.4) 

and (2.3.2), (2.3.3), (2.3.5). We also know that these values are feasible, i.e. positive. 

0.'ow all we need to do is show that the value of jj is feasible as well. 

From (2.2.17), we know that 

Ro = R + (f~L/P)(t + (1- ns).5) 

and we now let 

Tht'll [1'0111 (2.3.4) we have 
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.JJ(Ro - l~) - d)L(1~)(L + (1 - (\8).5') 

(1 - on) 

.JJ(Ro - Ro) 

(1 - (13) 

> 0 

The la:-;t step follows because we u.',sume that -0D < '~~L implies Ro < Ro· 

We are not able to derive straightforward stability conditions for E5. 

(2.3.28) 

(2.3.29) 

(2.3.30) 

Figure 2.3 illustrates the five types of equilibria. For the E1 simulation (Fig­

ure 2.3(A)), tIll' high flow rate (w = 0.8) ensures that the growth rates of the sensitive 

cells and resistant cells are lower than the rates at which they are washed out of the 

system. The flow rate is also high enough to ellsure that the growth rate of the lysogens 

is lower than the total rate at which lysogens are lost (via induction, segregation, and 

washing out). Thus. the E1 stahility conditions (obtained by requiring the eigenvalue 

expressions (2.:~.11)-(2.:~.13) to be negative) are satisfied. To check the feasibility of E1 

we simply observe that R = Ro = 100 > O. 

III Figure 2.3(B). the high adsorption rate of temperate phages to sensitive cells 

(61' = 10-5 ) IIleans that the population of sensitive cells cannot survive, and this in 

turn leads to the extillction of the lysogens and temperate phages. Thus, a stahle 

equilibrium of resources and resistant cells is estahlished. Note that the E2 stability 

conditions, obtained by requiring the eigenvalueR in (2.3.17)-(2.3.20) to be negative, 

are all satisfied. Tlw E2 fea..sibility conditions given by (2.3.15) and (2.3.16) are also 

satisfied. 

In Figure 2.:3(C)), resistant cells have a very significant growth disadvantage (O'D = 

0.5) compared to lysogens alld sensitive cells, and so the resistant population dies out 

very quickly. The low adsorption rate and burst size (61' = 10- 11 and (3 = 10) mean 

that the temperate phage and lysogen populations cannot be sustained, and a stable 

equilibriulll of resources and sensitive cells is established. Note that the feasibility COIl­

ditions ((2.3.21) and (2.~~.22)) are satisfied. The intrinsic stahility conditions (obtained 

by requiring the eigenvalues (2.3.23) and (2.3.24) to be negative) and the extrinsic 

stability conditions (which are the same as the extrinsic stability conditions given in 

Section 2.2.2 for Model 2, E2) are also satisfied. 

An E-t type equilibrium is shown in Figure 2.3(D). Here. the growth disadvantage 

of resistallt cells leads to their t'xtillctioll, and a stable equilibrium of resources and 

the other three populations is reached. We do Hot have straightforward feasibility and 

intrinsic stability cOllditiom; for E4, but we observe that the conditioll for extrinsic 

stability conditioll (obtained by requiring (2,3.25) to be llE'gative) is satisfied. 
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Figure 2.3(E) shows a stable equilibrium with all populations present. We do not 

have feasibility and stability conditions for E5. The only diffl'rencf' in pararnder valuf's 

betweell E4 and E5 is that the growth disadvantage of the resistant cells is lower 

for E5 thall it was for E4, so that the E4 extrinsic stahility conditioll (obtained by 

l'('quil'illg (2.:{'27i) to Iw lH'gat.iV(~) is uo l()ng(~r satisll('(l. Thus, we can regard this E5 

equilibriulll n." the result of It sllccessful invasion b~' resistant bacteria of t he above E4 

equilihrium. 

2.4 Model 4. Lysogens and sensitive bacteria with viru­
lent and temperate phage 

Another variation of the model consists of lysogens, sensitive bacteria, and virulent 

and temperate phage. Virulent phage can grow on both lysogens and sensitive cells. 

and the adsorption rate 6v is the sa.me for both types of cell. The model is given by 

dR 
w(Ro - R) - f['lh(R)£ + (1 - as)1jJL(R)S] 

dt 
(2.4.1 ) 

dL 
V-'dR)L + pOTST - 6v LV - (w + i + ~)L (2.4.2) 

elt 
dS 

t/.'s(R)S - 81'S'T -- 8v SV + ~L - wS (2.4.3) 
lit 
tiT 

if"h,L + (:1'1'(1 - p)()TS1' - 5TL1' - wT (2.4.4) 
dt 
(/\/ 

!3v6v(S' + L)V - wV (2.4..5) 
tit 

where 3v is the burst size for the virulent phage. The .Jacobian fur this model is: 

,-. -

-w - (~'~,(R)L -f'~)dR) -f.4J/,(R)(1 - tts) 0 0 
-(1 - Cl(8)f'I/J~(R)S 

1/'~.(R)L 1jJt{R) - <5\/ F p<5T T p8T S -8\/L 
-i - w - e 

(1 - (\s)v{(R)8 e (1 - o:s)'l/JL(R) -61'8 -80\, 
- 8T l' - 0\1 V - w 

o ifh - 81'1' fh(l - p)<51'T fh(1 - p)8rS 0 
-6T £ - w 

o v.L:I\,,(S\, Ffh,JV 0 ji\fJv(8 + L) 
--w 
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Figure 2.3: Numerical simulations for Model 3 (R=resources, L=lysogens, S=sensitive 
bacteria. 13=resistant baeteria, T=temperate phages). Five equilibrium types are 
shown:(A) Resources only (w = 0.8); (B) Resources and resistant bacteria (81' = 10-5 ); 

(C) Resources and sensitive bacteria (CI:n = 0.5, f3r = 10, 8T = 10- 11 ). (D) Resources, 
sensitivf' cells, temperate phages and their lysogens (an = 0.5) (E) Resources and all 
four populations (Oil = 0.32). Except where otherwise indicated, the parameter values 
are: Ro = 100, f = 5 x 10-7

, r = 0.7, k = 4,!3r = 100,81' = 10-9 , ns = -0.02, 0[3 = 0, 
~ = 0.0001, i=O.l, w = 0.2 
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2.4.1 Deriving and interpreting the equilibria 

By setting (2.4.5) equal to ~ero, we sec that either (r = 0 or w = (iyJv(S + L). 

If fr = 0, then the model reduces to Model 2, in which ease there are three possible 

equilibria as described in Section 2.2. Now suppose that \1 > 0 . As the equations for 

this model are somewhat intractable, we can begin by looking for equilibria in which 

one or more of the species populations (apart from V) are absent. 

We can rule out the possibility of any equilibria existing with zero resources by 

setting (2.4.1) equal to ~ero and substituting R = 0 and liJJ)R) = D. This leaves us 

with til(> collditioll wHo = 0, which call1lot be sat.isfi('d. Thus we can aSt'\lUllC that R is 
strictly positive for all equilibria ill this model. 

\Ve can a.lso rule out the existence of equilibria with lysogens present but no tem­

perate phages. Setting 2.4.4 equal to ~ero and substituting T = 0, we are left with the 

condition i,l1T£ = 0, which is false when L is positive. 

There a.re also no equilibria with 11 > 0 and f; = O. Equation (2.4.3) tells us that 

L = 0, hut if V is nOll-zero and both 5' and L are zero then there is no way that the right 

hand side of (2.4.5) can he ~ero. Therefore we can discount this type of equilibrium. 

~ow we look for an equilibrium with 11 > ° and £ = O. Since 11 is non-zero, we 

know from (2.4.5) that 

(2.4.6) 

Thus. setting Equation (2.4.3) equal to zero, we obtain 

(2.4.7) 

and :-;0 we must. have 

(2.4.8) 

Since L is zero and S is non-zero, Equation (2.4.2) tells us that l' = 0, and so the above 

expression becomes 

(2.4.9) 

and so 

(2.4.10) 
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13y substit.uting S = w/(/3v6v) into (2.4.1) (set equal to zero) aBd re-arranging, we 

obtain 

(2.4.11) 

which can h(' solved to find the value of R. Note that the above equilibriulll is also 

obt.ained if we search for an equilibrium with V > 0 and i = O. 

The final pot.ential equilibrium ha.s all populations present, although we are not 

able to derive expressions for the population densities at sueh all equilibrium. 

The full list of equilibrium types for this model is: 

El Resources ollly -(Ro, 0, 0, 0, 0) 

E2 Resources and sensitive cells -(R, 5, 0, 0, 0) 

E3 Resources, sensitive cells and virulent phages -(k S, 0, 0, V) 
E4 Resources, sensitive cells and both phage populations -(k 5, L, t, 0) 

E5 Resources and all four populations -Ck S;, L, t, V) 

2.4.2 Feasibility and stability of the equilibria 

The equilibrium El is feasible. The Jacobian at this point is: 

-w -n/JdRu) -fwdRu)(l - 0'8) 

0 lh(Ro) - i .- w - ~ 0 
.1(E1) = 0 ~ (1 - (8)~'dRo) - w 

0 i~h 0 
0 0 0 

The eigenvalues of .1(b'l) are: 

-w (three-fold) 

(1 - as)1/JdRo) - w 

lh(Rn) -w .... i·-E.. 

0 
0 
0 

-w 
0 

0 
0 
0 
0 

-w 

(2.4.12) 

(2.4.13) 

(2.4.14) 

It follows that E1 will be stable provided that (i) the growth rate of the sensitive 

('ells is less thall thn How rate, and (ii) the growth rate of the lysogens is less than the 

rate at which they ~u'e lost owing to induction, segregation and flowing out. 
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For E2, the fea .. <;ibility conditions are: 

r'(1 - ns) > w 

Ro > k 

(2.4.15) 

(2.4.16) 

:\ot(' that t.hese are t.he same as the feasibilit.y conditions for Modpl 2, E2. The Jacohian 

for E2, in the order (R. S, V, L, T), is: 

J(E2) = 

();Sf~l~ (R)S' -rh(R)(l -- as) 0 -f'~)dR) 0 
- f 4}~_ (i'l) 5 

-w 

~1~J(R)(l - o:s)S 'l/JdR)(1 - Qs) -6v 8 -JrS' 
-w 

0 0 (3v Jv S 0 0 
-w 

0 0 0 '~)L(R) p8T S' 
-w - i - ~ 

0 0 0 i;h rh(1 - p)8r l, 
-w 

The intrinsic section of the .Jacobian (i.e. the 2 x 2 matrix at the top left corner of 

J(E2)) has the following eigenvalues: 

-w (2.4.17) 

(2.4.18) 

Note that these are the same as the eigenvalues of the intrinsic .Jacobian of Model 2, 

E2. If these eigellvalues are negative, then the system is intrinsically st.able. 

The fin;!. eigeuvalue of tIlt' (3 x 3) extrinsic sectioll of the Jacobian is f1\,8v S- w. 

If this is positive, theu the virulent phages will be able to invade. To check whether 

the lysogens a.nd temperate phages can invade, we must determine whether or not the 

2 x 2 matrix at the bottom right corner of J(E2) has an eigenvalue with a positive real 

part; in fact, this matrix is the same as the extrinsic matrices of sections (1.2.2) and 

(Lt3), with trace and determinant given by (2.2.24) and 2.2.25 respect.ively. If the 
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determinant is negative, then there will he one eigenvalue with a positive real part; if 

the deterlllinant and the trace are hoth positive then both eigenvalues will have positive 

real parts. 

For E3, the value of S given by (2.4.6) is always feasible. From (2.4.10) we see that 

V will be feasible provided that 

(2.4.19) 

From (2.4.10), we must also have Ii> Ro in order for E3 to be feasible. 

The .Jacobian for E3, in the order (R, S, \I, L, T), is: 

.1(E3) = 

0' .<'" f'I;)~J h) S; -f~)LCii)(l - O's) 0 -n/JL(f?) 0 
-n/,~(in.5 

-w 

(1 - (}8)~!~JR)S (1 - (}8)~'dR) -r5v S -r5T S 
-8\/V - w 

() V/J~!8F !3v8vS - w V!3v 8v 0 

o o o 1h(R) - 6vV p6TS 
-w - oj - ( 

o o o i{JT !3T(1 - p)6TS' 
-w 

The intrinsic section of J(E3) is the 3 x 3 matrix at the top left corner; the system 

will be intrinsically stable if this matrix has no eigenvalue with a positive real part 

(Dill' of these eigenvahws is -w; the expressions for the other two eigenvalues are rather 

complicated). The 2 x 2 extrinsic section of the .Jacohian (hottom right corner) ha..<; 

trace 

If the trace is positive the11 there must be at least one eigenvalue with a positive real 

part, which llleans that the system is extrinsically unstable and the phages and lysogens 
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can invade. Even if the trace is negative the system will st.ill be extrinsica.lly unstable 

if the determinHllt. giVCll by 

j1T 1h8 (1l'dl~) - u) - i - ( - v~'di?) + JlW + p( - liv V(l - p)) 

+u) ( u) + i + ~ - 'l/!L (J~) + !SF V) , 
is negative. 

For E4, we kllOW from the analysis of Model 2 that for realistic parameter values 

there will be a unique feasible equilibrium. The Jacobian for this model, in the order 

(R, L, .'3, T, V), is: 

.1(E4) = 

(Ysf'l/{(R)5 --f1/JL(R) -f'lh(R)(l - (l~s) 0 0 
-f.'ljJ~JR),~' 
--c~'~(R)L 

-u) 

l/J~ (il.)£ '~'r,(R) pliTT pIiTS' -fl\.· L 
-u) -- i -, 

«'Uil)(l - o:s)8 E l/Jdil)(l - as) -liT8 -8v S' 
-8TT - w 

0 i{1T - 61'1' (:JT(1- p)6T1' fh(l - p)8r8 0 
-8T£ - w 

0 0 0 0 /1\18\1(5 + £) 
-w 

The (4 x 4) intrinsic section of the Jacobian is identical to the full Jacobian of 

I"lodel 2 (Section 2.2.2); the equilbrium will be intriuskally stable if this matrix has 

no eigeuvalues with positive real parts (note that iu Section 2.2.2 we were lllJable to 

obtain stra.ightforward expressiom; for these eigenvalues). The extrim,ic sect.ion of the 

Jacuhiall is the single delllent. 

(2.4.20) 

If this quantity is positive. then t.he virulent phages will be able to invade. 
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For E5. we are not ahle to dl'rive straightforward feasihility or stability conditions. 

Fignre 2.,1 shows example's of tlw five eq1lilibrilllll typps. III Figure 2.4(A). all equi­

librium of lype £1 is showlI. The high flow rate (w = 0.8) ensnres that the populations 

of lysogens, sensitive cells, and phages are all washed out of the system at a faster rate 

than they can grow. This equilibrium is feasible since i? = Ro > (). The eigenvalues of 

the ,Jacobian matrix (given by (2.4.12)-(2.4.14)) arc all negative, ::;0 the equilibrium i::; 

stable. 

III Figure 2.4(13), an equilibrium of type E2 is shown. Here, the flow rate is lower 

than for E1 (w = 0,2) and the growth rate of sensitive cells is high enough for this 

population to survive (0:8 = -0,1). The feasibility conditions (2.4.15) and (2.4.16) 

are satisfied. The eigenvalues of the intrinsic Jacobian (given by (2.4.17) and (2.4.18) 

are both negative, so the equilibrium is intrinsically stable. The extrinsic stability 

conditions. as described in Section 2.4.2, are also satisfied. 

In Figure 2.4(C), an equilibrium of type E3 is shown. Here, the higher burst size 

((1" = 150) and adsorption rate (6\1 = 2 X 10- 11 ) of the virulent phages enables 

thelll to coexist with the sensitive bacteria. The feasibility cOlldition 2.4.19 is satisfied. 

The intrinsic and ('xtrinsice stability conditions, as described in Section 2.4.2, are a.lso 

satisfied. 

In Figure 2.4(0), an equilibrium of type E4 is shown. The faster adsorption rate of 

temperate phages compared to virulent phages lea.ds to the extinction of the virulent 

phage population. We do not have straightforwa.rd feasibility and intrinsic stability 

conditions for this equilibrium. The condition for extrinsic stability (obtained by re­

quiring (2.4.20) to be negative) is satisfied. 

In Figure 2.4(E), an equilibrium of type E5 is shown, with all four populations coex­

isting. We did not obtain feasibility or stability conditions for this type of equilibrium. 
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2.5 Model 5. The Full Model 

This model includes Sf'llsitive and resistant bacteria, viruknt phages, and temperate 

phages and their Iysogcus. The full mode! equations arc given by (2.0.1)-(2.0.6). The 

Jacobian for t>.Iodel 5 (in the order R, L, 5, T. V, B) is: 

J= 

-(tl!~ (R)L -c~)L(R) -fh(R) 0 0 -·n/>L(R) 
-f1I}~ (R)5 +o:sf'h(R) +C'IBf'~!L(R) 

+O:8(4)~_ (R)S' 
-fv'UR)B 

+01 JJt:'l)J~JR)B 
-u.) 

~,~ (R)L l/'L(R) - 6", V pOTT pOTS -ovL 0 
-u.) - i-'; 

~,~_ (R)S 'lh(R) -01'S -6\-,S 0 
-C'IS1/>UR)8 -C'Is'I./JdR) 

·-6rT - O\,.V 
-w 

0 'i{J'j" - 61"1' IhoT1' /hlrrS 0 0 
-P(hOTT -p/hJTS 

-orL 
-w 

0 j1\,rlv V f1\fOV V 0 /1",rlv S 0 
f1v 8v L 

--w 

1/}~JR)B 0 0 () 0 lh(R) 
--CtB1/)~_ (R)B -(~B¢dR) 

--w 

2.5.1 Deriving and interpreting the equilibria 

We can rule out the existenee of equilibria with R = 0 by setting (2.0.1) equal 

to zero and substituting R = 0 ami It'd R) = O. This leaves us with the expression 

I.>.:Ru = 0, which is false. Other potential equilibria in which either iJ = 0 or V = 0 (or 

B = fr = 0) have been eovered in the analysis of the previous models. Thus we need 

only look for equilibria with fj > 0 and V > O. 

42 



3 ~-~-- 10 

B 
2.5 A 8 

~ 
If) 
c: 
Q) 

Cl 

~ 
-' 

10 20 30 
Time (hours) 

lj ---L 
-5 

T 
- - V 

40 50 

12r---~----~----~----~--~ 

10 .c -------- ----.- --.- --. 

... 
l:' 
'Uj 6 " 
c: 
Q) 

Cl 

~ 4 
...J 

2 
I' 

'i 
00 

12 

10 

- ... , -'. ... , 
'. '. 

200 400 600 
Time (hours) 

8
-- R 

---L 
-5 

T 
- - V 

800 1000 

D 
8~ -------------------~, -, 

" 6 t. 
\ , , 

4 , 

o 

, 

, , 
\ 

\ 
\ 

200 400 600 
Time (hours) 

r---
R 

---L 
-5 

T 

~ 

800 1000 

~ 
l!! 
~ 
~ 
-' 

2,' 
... 

00 

--R 
~_----~ - - -L 

-5 

50 100 
Time (hours) 

T 
--V 

150 

12r---~----~----~--~----~ 

E 18-.-----·- --.. -- -- --- --- --- ---.- .. --. 
"~","""' ';';,","'"'";;;;;;'";;,;;;._;;_".".,;~._. --- R .. __ --------------~---L -5 

.. T 

-- V 

r..---- .... - - .. ------ .. --- .. -.... --

1000 2000 3000 4000 5000 
Time (hours) 

Figure 2.4: Nmnerical simulations for Model 4 (R=resources, L=lysogells, S=sensitive 
bacteria, T=tempcrate phages, V=virulent phages). Five equilibrium types m'e 
shown:(A) Resources only (81' = 1O-12.!h = 1O,6T = 1O-12,Ro = 50,w = 0.8). 
(B) Rl'::.;Qurces and sensitive bacteria (6v = 1O-11 ,{Jr = 10,0], = 1O- 12 ,as = 
-0.1, w = 0.2). (C) Resources, sensitive bacteria and virulent phages (6v = 150.ov = 

2 x lO-II,/h = 1O,6T = 10- 12 .08 = -O.I,w = 0.2). (D) Resources, sensitive bacteria, 
iysug01l1' and Lf'IIlperate phages (6", = 10- 11 ). (E) Resourees, sensitive cells. iysogens, 
temperate phages aBel virulent phages (8", = lO-JU). Except where otherwise iudi· 
cated. the parameter values are: Ro = 100, € = [) x 10 7". = 0.7. k = 4'{h = 80. BF = 
100,8,], = 8 X 10- 10

, (\8 = -0.02, ~ = 0.001, i = 0.001 
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First suppose that iJ and (, are positive, but 5 is zero. Then (2.0.3) (set equal 

to zero) implies that L = O. But if .s' = L = 0 and V > 0, then the right hand side 

of (2.0.6) cannot be equal to zero. Therefore, there are no equilihria of this type. 

~ext we look for equilihria ill which all populatiolls apart froUl L are present. 

Setting (2.0.2) equal to z('ro. we arc left with p6T !no., '- 0, which cannot \)(' satisfi('d if 

f:i and i are both positive. So we can discOllll( this type of equilibria. 

~ow we look [or equilibria containing all populations apart [rom i. In this CH .. ..,e, 

setting (2.0.5) equal to zero we have i(h·L = 0, which is false if L > O. 

Suppose now that there is an equilibrium with all populations present apart from 

lysogens and telnperate phages. Using (2.0.6) (set equal to zero) we find.5 = w/(;J~,OF)' 

and from (2.0.4) we find 1/'di?) = w/(1 - an) (from which we can obtain the value of 

R). The expression [or V is obtained from (2.0.3): 

v=-, w (an - as) 
Ov 1 - 0:13 

and the expression for iJ is obtained from (2.0.1): 

[J = (Ro - R)(1 - 0:13)/1VOV - (1 - as)wf 
£(1 - lX13)!1VOV 

(2.5.1) 

(2.5.2) 

The remaining possibility is an equilibrium with resources and all five populations 

present. 

The full list of pquilibrium types for this model is: 

E1 Resources only - (Ro, 0,0,0,0,0) 

E2 Resources and sensitive cells - (R, 5,0,0,0,0) 

E3 Resources and resistant cells - (R, 0, 0, 0, iJ, 0) 

E4 Resources, sensitive cells and virulent phages - (il,S,(J,O,O, V) 
E5 Resources, sensitive cells, lysogens and temperate phages - (R, 5, L, t, 0, 0) 

E6 Resources, sensitive cells, resistant cells and virulent phages - (k 5, 0,0, H, V) 

E7 Resources and aU populations except virulent phages - (R, 5, L, t, H, 0) 

E8 Resources alld all populations except resistant cells - (R, 5, L, t, 0, if) 

E9 Resources and a.1I five popUlations - (R, ,(;;, L, t, H, V) 

2.5.2 Feasibility and stability of the equilibria 

The equilibriulll E1 is feasible because Ro is always positive. The .Jacobian for E1, 

in the order (R, S, l3, V, L. T), is: 
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.1(E1) = 

-u) -('Ih(Ro)(1 - O's) 

0 (1 - o:s)'h(Ro) - u) 

0 U 

() 0 

() 0 

0 0 

with eigcnvalues 

-f4.lL(Ro)(1 - (Xll) 

0 

(1 -- o:n)V;L(Ro) -- w 

0 

0 

0 

(1 - Cts)'~;dRo) - u) 

(1 - CtB)'lh(Ro) - "'" 

1;L(Ro) - w - i - E 

-u) (repeated twice) 

and these must all be uegative for El to be stable. 

0 -f'l/JdRo) 

0 ~ 

0 0 

-w 0 

() U.'L(Ro) - w - i - ~ 

0 i/1r 

E2 is feasible provided that the following conditions are satisfied: 

(1 - oo8)'f' - u) > 0 

Ro - R(E2) > o. 

The Jacobian for E2, in the order (R, S, D, V, L, T), is: 

J(E2) = 
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0 

0 

0 

0 

0 

-u) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

(2.5.6) 

(2.5.7) 

(2.5.8) 



-tlj'~,(ins -u/Jr,(H)(l - ns) -cljJdH)(l - nEd 0 -d'[,(H) 
+(l::;(4'~,(R)." 

-w 

~'l, (l})( 1 - os).5- I/Jdil)(l - (l's) 0 -t5v .§ ~ 
-w 

() 0 ~}dH)(l - (lH) 0 0 
-w 

0 0 0 ;'J'v't5"S' 0 
-..,) 

() () () 0 'h(R) - w 
-i - ~ 

() () 0 () ijJ.r 

The 2 x 2 intrinsic matrix (top left of J( E2)) has the followillg eigenvalues: 

-w 

0 

-OT'§ 

() 

() 

pth/;; 

th'(1 - plOTS 
-w 

(2.5.9) 

(2.5.10) 

Of the four eigenvalues of the (4 x 4) extrinsic matrix, we can read off the first two as 

(1 - nu )ifJ/,("R) - wand (J"fJ" /i - w. The conditions for one of the other two eigenvalues 

to have positive real parts are the same as those given in Section 2.2.2 for the extrinsic 

matrix of Model 2, E2. 

E3 is feasible provided that the following condit.ions are satisfkd: 

(1 - Cl:B)r' - w > 0 

Ro - R(E3) > O. 

The Jacobian for E3, in the order (R,B,S, \l,L,T), is: 
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(2.5.11) 

(2.5.12) 



-w - t1J'~,(Jf)(l - c<a)H 

1/'1,(17)(1 - o:n)B 

0 

() 

0 

() 

wit.h eigenvalues 

-t1I'[,(R)(l - (ta) -t1,bdH)(l - as) 

h(R)(l - nn) 0 
-w 

0 1./JL(R)(1 - (8) 

-w 

() 0 

() 0 

() 0 

(1 - Cts)1/JdR) - w 

1/JdR) - w - i - ~ 

(1 - txn)(4JdR) - E1/JUR)) - w 

-w (three-fold) 

which must all be negative for E3 to be stable. 

0 -t1/:L(R) 

0 0 

0 

-w 0 

0 ~}dil) - w 
-i - ~ 

0 i/h' 

0 

0 

() 

() 

0 

-w 

(2.5.13) 

(2.5.14) 

(2.5.15 ) 

(2.5.16) 

For E4, we see that the expression for 5, given by (2.4.6), is always feasible. Us­

ing (2.4.10), we also require that 

for E4 to be feasible. The Jacobian for E4, in the order (R, 8, V, B, L, T), is: 

./(£'4) = 
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(2.5.17) 



-, !jJ/,(H)S -(VidH)(l - 0's) 0 -t1/-'dH)(l- (113) -(VldH) 0 

+cxSf1j;U R)S' 
-w 

I/J/, (h).~' I/'L(R)(l - as) -6\1 .e; 0 ( -6TS 
-nsl!J{Ji"l)S -6\,C' - w 

0 (3",.6", \~' !1v6vS 0 3v6\! ~r 0 
-w 

0 () () (1 - CtH}1/'LlR) () () 

-w 

() () () 0 ~'dR) - 6F V p6TS' 
--w - i - ~ 

() 0 0 0 i3T Ih(l - p)6'['S 
-w 

The intrin::;ic Jacobian does not have straightforward eigenvalue expression. The 

extriusic matrix is the 3 x 3 matrix at the bottonl right of J(E4). We can see that 

the first eigenvalue is (1 - oH)llJdR) - w. One of the other eigenvalues of the extrinsic 

matrix will have a positive real part if the quantity 

(which is the trace of the 2x2 matrix at the bottom right of J(£4)) is positive. 

We were not able to obtain straightforward feasibility conditions for E5. The Ja.co­

bian for E5, in the order (R, 8, L, T. B, V), is: 

.I(E5) = 
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-qJL(H)i. -flh.(H)(l - 0.8) -t~)dR) 0 -ch(R) 0 
-C1})£(R)} A +o.Hf1/)dR) 

+n8(~'~JR)8 
-w 

I/>L(R)(l - Cls),C; 1/.'dH)(l - 0.8) -61'5 0 -6v 5 
-6'1''1' - w 

h(R)L p6T'1' 1/.'dR) - i p6T ,'" () -6vL 
-~-w 

0 LJT(l - p)61' i' ifh - 61'1' ~J1'(l - p)()1'5 0 0 
-61' L - w 

0 0 0 0 ~)di?) 0 

-nlJJ}'dJ~) 
-w 

0 0 0 0 0 .(jv6v 5 
+/3\,6v L 

-w 

There are no straightforward expressions for the eigenvalues of the 4 x 4 intrinsic Ja­

cobian. The eigenvalues of the 2 x 2 extrinsic matrix for E5 are: 

(1 - CtB)'1/JL(R) - w 

/jvrSv(S' + £) - w. 

(2.5.18) 

(2.5.19) 

If these are both negative, then the equilibrium cannot be invaded by resistant cells or 

virulent phages. 

For EG, the feasibility condition for R is 

(2.5.20) 

(from (2.0.4)). The equilibrium density for S is w/((3v lSv ), which is always positive. 

For fr to be fea.sible, we must have (a8 - aB)/((\B - 1) > 0; since we are assuming 

that (ls < an, this condition is equilivalent to 

O:B < 1 (2.5.21) 
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Using (2 . .1.2), the final fen);ibility condition is: 

(2.5.22) 

The Jacobian for E6, in the order (R, 5, n, V, L, '1'), is: 

'/(E6) = 

-f1j'~(R)S -·(1/JI,(R)(l -- as) '-f1/'dR)(l - on) 0 -n/)I.(R) 0 

+Qs('~}~ (R )cS' 

-f1/J/JR)B 
+aBf'~'L (J~) B 

-u,' 

,~,~, (R),'; lh(R)(l - os) 0 -bv'~' -bT''; 
- a81/'I, (R)!; -d,.·Y - w 

tI'L (R) [} 0 1/'dR)(l - an) 0 0 0 
-nBI/'L(R)i3 -w 

() Ih,6",y 0 !3v dv S ih·6v Y 0 
-w 

0 0 0 0 h(R) - dvY p6T'f.; 
-w - i - ~ 

0 0 0 0 ilh .6T(l - P)6T'~' 
-u,' 

The 4 x 4 intrinsic Jacobian does not have straightforward eigenvalue expressions. If 

the trace of the 2 x 2 extrinsic matrix (bottom right of ./ (E6)) is positive then this 

extrinsic matrix will have an eigenvalue whose real part is positive, and so the intrinsic 

system can be inva.ded by lysogens and temperate phages. 

We are not able to obtain straightforward feasibility conditions for E7. The Jacobian 

for E7, in the order (R5,B,L,T, V), is: 

J(E7) = 
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-( 1I.·~.(H)L -qJdH)(l - as) -(~'·I.(H)(l - Oil) -l1i'I.(H) 0 () 

-(~.~, (R).i:; 
+OS(t/,~" (R).:' 
--t~'L(H)j) 

+OH('t/·~. (R)Ii 
-w 

.t/J~. (in·:' t/ldf~)~~ - os) 0 ~ -frr .:' -8\5' 
-OSIPL (R)S' -1'>7·1 - v.) 

ll''r.(il)B 0 lh(R)(1 - aB) 0 0 0 
-(.lBt/'~. (i7.)B -v.) 

v'[, (H)L p61''1' 0 t/JdR)-w p6T 5' -6v L 
-i - E. 

0 1:Ir(l - 1')61''1' 0 i/,J1' - 6T 'i' 111'(1 - P)8T5' 0 
-61'L - w 

() 0 0 0 0 {11/61/ .S· 
+(1V6\/ L 

-w 

The 1) x 5 int.rinsic Jacobian docs not have straightforward eigenvalue expressions. The 

intrinsic system can he invaded by virulent phages if 

l1v8v(S + L) - w > O. (2.5.23) 

We do not have feasibility conditions for E8. The Jacobian for E8, ill the order 

(R,S,L,T, V,E), is: 

J(E8) = 
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-/1jJU il)L -Clh(R)(1 - us) -Cl/JL(R) () 0 -(~}dR) 

-fl/J~_(R)S' +nBt'li'L(in 

+Ost~)~_ (l?),~' 
-,.; 

l1J~ (k).~ th(R)(l - o:s) -61'/:" -6vS 0 

-o:s'~}~_ (R),S' -6T t - elv V 
-w 

l/J[. (Rl L p6T i' lh(R) pelT'S -6\1 1- 0 
-i - ~ 

-6v V - w 

0 Ij1'(1 - p)6T i' ifJT /IT (1 - ]J)I)T/;' 0 0 
-t5T 'i' -6T 1- - ",,' 

0 /3\!6\! V l3\!6V V 0 (3v6v(,9 + L) 0 
-w 

0 0 0 0 0 (1 - OB)lh(R) 
-w 

The 5 x 5 intrinsic Jacohian docs not have straightforward eigenvalue expressions. The 

intrinsic systenl can be invaded by resistant cells if 

(2.5.24) 

We arc not ahle to derive straightforward feasihility and stability conditions for E9. 

Figure 2.,) shows examples of all 9 equilibrium types. Figure 2.5(A) shows an 

El l'<lllilibrilllll, ill which a high flow rate (w = 0.7) causes the extinction of all 5 

populations. This equilibrium is feasible because it = Ro > O. The stability conditions 

(obtained by requiring the eigenvalues (2.5.3)-(2.5.6) to be negative) are satisfied. 

In the E2 equilibrium shown in Figure 2.5(B), the increased growth rate of sen­

sitive cells (0:8 = -0.04) enables their population to survive. The feasibility comli­

tions (2.5.7) and (2.5.8) are satisfied. The eigenvalncs of the intrinsic stability matrix 

(given by (2.5.9) anel (2.5.10)) are both negative, and the extrinsic stability conditions 

(as described ill Section 2.5.2) are also satisfied. 

Figure 2.5(C) shows an E3 equilibrium with only resistant cells present. Although 

sensitive cells have a growth rate advantage over resistant cells, sensitive cells are elim­

inated owing to the high adsorption rate of the virulent phages (8" = 10-3) (and with 

no sClIsit.ive cells present. the virulent phage population cannot survive either). The 

feasibility conditiollS (2.5.11) aud (2.5.12) are satisfied, and t.he eigenvalues ((2.,).13)­

(2.5.iti)) of the E3 .Jacobian are all negative. 
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Figure 2.5(D) shows ,Ul E4 equilibriulll with sensitive cells and virulent phages 

pr<'sf'nt. Resistallt ("(,lis have a significa.nt growth disadvanta.ge compared to sensitive 

cells. ami telllperate phages have a lower burst size and adsorption rate wmpared 

to virulell! phages. The f(>asibility conditions (2.G.17) is satisfied. We do not have 

st.raightforward critl'ria for intrinsic stability, but the conditions for extrinsic stability 

(as described ill Section 2.5.2) are satisfied. 

III Figure 2.5(E), an E5 equilibrium with sensitive cells, lysogens and temperate 

phages is ShOWll. The burst sizes of temperate and virulent. phages a.re the same (they 

are both equal t.o 100), but the adsorptioll rate for telllperate phages is much higher 

thall for virulent phages. We do not have expressions for feasibility or intrinsic stability. 

The conditions for extrinsic stability (obtained by requiring the eigenvalues (2.5.18) 

and (2.5.19) to be negative) are satisfied. 

An EG equilibrium is shown in Figure 2.5(F), with sensitive and resistant cells 

coC'xisting with virulent phages. Here the growth rate disadvantage of resistant cells 

is lower (ou = 0.1) than for tIlt' preceding equilibria, and virulent phages have a 

superior burst size and adsorpt.ion rate compared to ternperate phages. We do not have 

expn'ssions for fea~ibility or intrinsic stability. The conditions for ext.rinsic stability, as 

described in Section 2.5.2, are satisfied. 

Figure 2.5(G) shows all populations coexisting apart from virulent phages. Here 

temperate aIHi virulent. phages have t.he same bun.;t size, hut temperate phages have 

a lllllCh higher adsorption rate than virulent phages. We do not have expressions for 

fewiibility or intrinsic stability. The eondition for extrinsic stabilit.y (given by (2.5.23)) 

is satisfied. 

Figur(' 2.5(H) shows all populations coexisting apart from resistant cells, whose 

growth rat.e disadvant.age (nil = 0.7) is too great for them to survive. We do not have 

expressions for feasibility or intrinsic stability. The condition for extrinsic stability 

(givml by (2.5.24)) is satisfied. 

An E9 equilibrium with all 5 populations present is shown in Figure 2.5(1). We do 

Bot haw straight.forward fea.:;bility and stability criteria for E9. 
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Figure 2.5: Numerical simulations for Model 5 (R=resources, B=resistant bacteria, 
V= virulent phages, L= lysogens, S=sensitive bacteria, T = temperate phages). ine 
equilihrium types are shown: (A) Resources only (w = 0.7, C'iS = - 0.02) (B) Resources 
and sensitive cells (w = 0.7) (C) Resources and resistant cells (as = - 0.032 , an = 
- 0.02S ,w = 0.69,0" = lO-:i ) (D) Resources, sensitive cells, and virulent phages (aB = 
0.7 ,01' = 10- 11 ) (E) R sources, sensitive cells, lysogens, and temperate phages (!3r = 
100,01' = 10- °,0" = 1O- 11 ) (F) Resources, sensitive cells, resistant cells and virulent 
phages (aB = 0.1 , OT = 10- 11

) (G) All populations apart from virulent, phages (O'B = 
0, (31' = 100.6T = 10- 9 ,011 = 10- 11 ) (H) All populations apart from resistant cells 
(0./3 = 0.7) (I) All populations. Except where otherwise indicated, the parameter values 
are: Ro = 100, f. = 5 x 1O- 7 , r = 0.7,k = 4,/3y = 80,{1" = 100 ,8T = 8 X 10- 10 , 611 = 
lO- lO,as = - 0.04,O'n = 0.4 , ~ = O.OOl ,i = 0.001 ,]) = O.OOl,w = 0.5 . 
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2.6 Discussion 

Characteristically resistant cells will always invade an existing equilibrium, provided 

that their growth rat.e is greater than the flow rate. This is clear from the eigenvalues 

of the full or extrinsic Jacobians for Model 3 (E1, E3, and E4) and Model 5 (E1, E2, 

E4, E5, and ES) - each of these sets of eigenvalues includes the term (1- on)lf!L(R) - w. 

\Ve have assUlJled throughout that resistant cells have a growth disadvantage compared 

to sensitive cells. Thus, if there is a popUlation of sensitive cells present in the initial 

equilibriulll, t11ell these will coexist with all invading resistant population if their growth 

advantage is sufficiellt to compensate for depletion via phage infections. If the difference 

in growth ratps betw(-'en the two popUlations is suffi.cielltly small then the presence 

uf rt':,istant ('(-'lis will drive the sellsitive cell population to extinction, as shown ill 

FiRmf' 2.;J(C). 

The ability of virulent phages to invade an existing equilibrium depends partly on 

which spC'cies are present in the equilibrium. If neither sensitive cells nor lysogens are 

preS('llt, then t he virulent phages will have no cells to infect and therefore they cannot 

iuvade. If seu:>itive cells or Iysogens or both are present, as iu I\'lodel 4 (E2 and E4) aud 

!v1odel 5 (E2, E5, and E7), then a virulent phage population with a high enough burst 

size U:Jv) and adsorption rate (OF) will be able to invade. We can see this by considering 

the invasion eigenvalue for each of these equilibria. For the equilibria which include 

sensitive cells but no lysogens (i.e. Model 4, E2 and Model 5, E2), this eigenvalue 

is given by !h'iwS - w, while for the equilibria which include both sensitive cells and 

Iysogens (i.e. Model 4, E4 and Model 5, E5 and E7), the eigenvalue is (3\fOv('s' + £) - w. 

1\'ote that if the product !1vOv is sufficiently high then the presence of virulent phages 

will lead to the extinction of the available host cells and consequently the extinction of 

the phage population as well, as shown in Figure 2.5(A). 

The abilit.y of temperate phages and their lysogens to invade also depends on which 

species are present in the existing equilibrium. If sensitive cells are not present (as in 

!\ludcl 1 (E1), l\Iodei 2 (El), Model 3 (El and E2), Model 4 (El), and Model 5 (E1 

and E3)) t hell the phages will have no potential host cells to infect. However, if the 

growth rate of the l.ysogens ('t/J dl~)) is greater than the combined rates of induction, 

segrt'gation (i.e. the rate at which lysogens become sensitive cells again, as a result of 

losing their prophapp), and olltftow, then an inva.<;ion by lysogens is possible. In each 

of these equilihria, the inva.<;ion eigenvalue is given by 4'dRo) - 'i - ~ - w. Thus we 

have obtained the new finding that the conditions for a successful invasion depend only 

on the characteristics of the lysogens (i.e. growth rate, induction rate, and segregation 

rate), and not on the characteristics of the phages (i.e. burst size and adsorption 

rate). The presence of the lysogens would in turn lead to sensitive cells and temperate 
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phages appearing in the ellvironrnent vIa the processes o[ segregation and induction 

respectively. If sensitive cells are present in t.he initial equilibrium (as in Model 2 (E2), 

Model 3 (E3), Model 4 (E2 and E3), and Model 5 (E2, E4, and E6)), then characteristics 

of t.he phage population as well as the lysogen population will be relevant in determining 

whether an invasion is possible; thus, for these equilibria. there are two relevant invasion 

eigenvalues - one [or the lysogens and one for the temperate phages - and in each case 

these are obtained from a 2 x 2 matrix of the form 

1j!L(I~) - 6\1 V p61"~ 
-'i - w - ~ 

i,BT (IT(l - p)6T S 
-w 

A high burst size ami adsorption rate will improve the chances of a successful invasion 

by the phages (but as with virulent phages, there is a risk of the sensitive cells becOluing 

extinct if the rate of phage infection is too high). If virulent phages are present ill the 

initial equilibrium then this will make invasion by Iysogens more difficult, since some 

of the lysogens will be infected and lysed by virulent phages. 

The quest iou of why temperancc evolved as a characteristic of certaiu phages is 

uuresolved, but Inodels such as the ones analysed in this chapter can provide some 

clues, and also suggest directions for future investigations. The models can also indicate 

which conditions will favour populations of temperate phages over virulent ones. 

Assuming that there is It plentiful supply of resources and sensitive cells present in 

the environment. the outcome of competition between temperate and virulent phage 

populations will depend on the parameter values, in particular: (i) the relative adsorp­

tion rates and burst si~cs of the two populations; (ii) the probability of lysogeny and 

the induction rate of the temperate phages. Given an equilibrium of virulent phages 

and sensitive cells (Model 4. E3) the analysis showed that the conditions for a suc­

cessful invasion by temperate phages and lysogens arc more likely to be satisfied if the 

probability of lysogcuy p and the induction rate i arc both low. 

Iu a Iysogeu thl' prophage providcs the bacterial host with new genes. For example, 

whell Stx phages form lysogens with E. coi'l, the host cell acquires Hew DNA, including 

the genes which code for Shiga toxins. Some of this additional DNA may have an 

influence Oil the fitness of the lysogen (Smith et ai, 2007). For example, Shiga toxins 

are only released on induction and lysis (i.e. death) of a host cell, but this release of 

t.oxins lllay result in the creation of more favourable conditions for the remainder of 

the lysogeu populatiou. The rciea..<;e of Shiga toxins causes bleeding in the mammalian 

gilt., thus proviciillg a source of iron to surviving Iysogens from decaying blood cells 
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(Candwya et ai, 2(04). 

Virulellt phag('s run the risk of beillg too virulent and lysing the entire population 

of sensitive cells, so that the newly released phages cannot reproduce, and the phage 

population uecomes extim:t. Temperate phages do not risk extinction in this wa.)" 

because even if all sensitive cells are infected by temperate phages, some of these will 

hecome lysogcns which will preserve the phage DNA. Thus. phages may have evolved 

to be able to lysogenize their hosts as a. method of surviving periods when the supply of 

sensitive cells is low. The level of resources present in the environment, which may vary 

over time, will also affect. the sensitive cell population. Note that the lllodeis considered 

ill this cha.pter assume a constaut input resource concentration, and therefore do not 

com,ider the impact of resource variability on populations of phages and bacteria; both 

St('wart and L('vin (UJ84) and :Mittl('r (HJ!)G) show briefly how seasonal variations in 

resource' levels may be incorporated into their population dynamical models, but there 

is much scope for fut nre research in t.his a.rea. 

In this chapter we have considered population d'yuamical models of phages awl 

hacteria. This work provides the basis for modelling the evolution of temperate phages 

in Chnptt'r 3. 
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Chapter 3 

Adaptive Dynamics of Temperate 
Phages 

3.1 Introduction 

Temperate bacteriophages (phages) select between two developmental pathways 

following adsorption to a host bacterial cell. These pathways are known as lysis and 

I.vsogen,\'. Dlll'ing lysis, many copies of the phage arc produced and then released when 

the cell is lysed. If the lysogenic' pathway is selected, the phage genome is inserted into 

the bacterial genom€' and replicated passively every time the cell divides. Following 

cn'atioll of Ii Iysog(·ll. It process known as induction may be initiated at a later time, 

It'llfling: to lysis of the host cell and the relea..,e of new phage particles. In the extensively 

studied temperate phage lambda, an increasingly well understood molecular switching 

mccha.nism selects hetwecu the two pathways. and can also initiate induction of a. Iyso­

gCIl (Ptashlle, 2004; Evans ('1, ai, 2007). For the purposes of this chapter the behaviour 

of the switch is characteri;r,cd by two parameters: the probability of lysogeny (p) and 

the lysogen induction rate (I). 

Using a chemostat model, Mittler (1996) investigated the outcome of pairwise 

competition bet ween phage strains with different (fixed) values of i and p. In this 

model, strains with low values of both p and i were fouud to be strong competitors and 

generally ahle to invade when rare. It wa.') speculated that this may be the reason why 

well-studied temperate phages such as phage lambda, Mu, and PI have all evolved to 

have probabilities of Iysogeuy lower than 0.5 and induction rates of the order of 0.00001 

per ccll and generation (assuming that cells are not starved and are infected by a single 

phage) (Kolll'ilsky. 1973; Howe and Bade, 1975; Rosner, 1972); in theory ]J could he 

Iln,Vwhcl'l' lll't wepu 0 and 1, and i could be auy nOll-negative numher. The aim of this 

chaptPf is to investigate the evolution of the parameters p and i. 

The theury of Adaptive Dynamics (Geritz et ai, 1998) provides a framework 
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for moddlillg the evolution of a single trait withilla population. Initially there is a 

rC':-;ident populatioll of identical individuals at equilibrium. but sUlall Ulutations can 

occur ill this population. If a few mutants emerge, they may simply die out so that 

the previous equilibriulll is restored; alternatively, their population Illay grow so that 

they eventually replace the existing resident population. Evolution thus proceeds via 

a series of small lllutations. Evolutionary singularities play a central role, and they 

can be of various types corresponding to very different evolutionary outcomes. They 

can he attractors (coIIllllonly associated with the long-terlll emergence of intermediate 

trait values), repellors ('extreme' trait values) or branching points (dimorphisms/trait 

coexistence) . 

In the present chapter, the methods of Adaptive Dynamics are applied to the 

Mittler (1996) model. The aim is to determine which evolutionary outcomes are pos­

sible in this model, and to interpret these outcomes biologically. In common with 

applications ill Ulany other areas (e.g. Bowers and \Vhite (2002). de Mazancourt and 

Dieckmann (2004)), a constraint is introduced such that i = f (p) for some function f. 
SOUle analytical re::mlts are derived which can be used to locate and classify the evolu­

tionary singularities of the system, and we explore the importance of the shape of the 

function f in determining the number and nature of the singularities. The theoretical 

results ohtainpd are illustrated with a number of examples. 

3.2 A two-strain model 

The clWlllostat model of host-phage interactions a.'i described by Mittler (1996) 

consists of two phage strains (PI and P'2) and their associated host lysogens (LI and 

L'2 n~spcctive'ly). There' is also a. flow of S<'IlsitiV<' bacteria (8) and resources (R) into 

the chcmostat. Foilowiug adsorption of a PI phage to a sensitive bacterial cell, an LI 

lysogen may he formed, while adsorption of a P2 phage may result in the formation of 

an L'2 lysugeu. Strains 1 aut! 2 differ ouly in their prohabilities of lysogeny (PI and P2 

respectively) and their induction rates (i 1 and i'2)' The model is given below: 
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dR 
dt 
ciS' 

dt 
riLl 
dt 

dL'2 
dt 

dPI 

dt 
dP2 
elt 

= w(Ro - R) - fT(S + Ll + L2 )R/(R + k) (3.2.1) 

(3.2.2) 

(3.2.3) 

( 3.2.4) 

(3.2.5) 

(3.2.6) 

Hen' w is til<' clle'lllostat flow rate', and Ro and .','0 are the concentrations of resource 

and susceptible bacteria iu t.he input reservoir. Thus resources aud susceptible bacteria 

cuter the habitat at rates of wRo and wSo respectively. Similarly, all of the constituent 

species within the habitat are wa..<;hed out at a rate proportional to w. The growt.h rates 

of susceptible bacteria and lysogells are related to the availability of resources via the 

Monod fUllction rR/(R + k) (Monod, 1949), where T is the maximal growth rate and 

k is t he resource concentration at which cells grow at half their maximal growth rate. 

TIl(' f'fficif'llCY with which cells take up resources is measured by the parameter E, so 

that resources are consumed at a rate of ET'R(S + Ll + L2 )/(R + k). The parameter 8 is 

associated with the rate at which free phages encounter and adsorb to bacterial cells. 

The probahility that a phage of strain PI (P2) will form a lysogen with its bacterial 

host is denoted PI (P2), and it (i2) is the spontaneous induction rate for a lysogen 

of type L1 (L2)' Those phages which do not form lysogens will enter the lytic cycle 

illlmediately following adsorptioIl to a susceptible bacterial cell. Following lysis of an 

infected cell. the number of newly created phages is given by the hurst size, rJ. The 

parameter ~ allows for the event of a lysogen losing its prophage and thus returning 

(0 its original state of It susceptible bacteria. The model a..'lsumes that lysogens are 

imrnuue to further infection by either phage strain. 

i\'ow suppost' that there is a resident population of strain 1 and its lysogen at 

equilibriulIl. Strain 2 and its lysogen will be able to invade when rare if the following 

cOJldition is satisfied (Mittler, 199G; set' Appendix A for a derivation): 

(3.2.7) 

where 
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l(P, i) 

p(p, i) 

Q(p, i) 

P"/;3L* 

oS·P"/L" 

U'JpoS" P* - r'JiL *)/ P' 

and S*, L', and P* are the equilibrium densities of S, L, and P for a resident phage 

with parameters Ji and 'i. It can be seen from (3.2.7) that the value of q(Pl,id will be 

irnportallt ill determining whether or not strain 2 can invade. If Q(Pl, id is positive 

then a strain with low jJ2 and a high i2 c(In invade, while if Q(p!, i!) is negative then a 

strain wit h a high Ji'2 a.nd a low ;2 can invade. 

By setting the right hand side of Equation (3.2.5) equal to 2ero, and re­

arrangillg, tht' expression for Q(p, i) can be shown to be equivalent to: 

Q(p, i) = (3JS· - JL* - w 

and so Q(p, i) can be interpreted as the net rate at which the phage population would 

illcrease if thl' probability of lysogeny were 2ero. 

We now summarise some observations regarding the function Q which were 

statl'd in Mittler (1996). Firstly, if Q(Pl, il) and Q(p2, 'i2) have opposite signs then 

both straills call invade when rare and the two strains will coexist. On the other hand, 

if q(l)!. i 1) alld Q(p2, i2) have the same sign t.hen the stra.in with the lower value of 

IQI can invade when rare. while the strain with the greater value of IQI cannot invade 

when rn.re. Furthcnllol'(" if the resident h8.<; q = 0 t.hen invasion is not possible by any 

lllutant strain; if the mut.ant has Q = () then it ca.n invade a.ny resident with q f 0, but 

will llut drive it to extinction. Thl' results which we obtain using a.daptive dyna.mics 

will shed furtlu:,r light on these observatiolls. 

3.3 The adaptive dynamics approach 

Thl' approach lIsed by ~1ittlcr (1996) involves modelling the outcome of competit.ion 

lwtw('('1l two fixed phagp st.rains, wlwreas tIl{' adaptive dynamics approach enables 

repeatl:'d lllutation a.1le! selection to be modelled. We aim to investigate long-term 

evolutionary outcome1'5 for temperate phages using this approa.ch, in the context of an 

equitable environment. 

We assume that there is a function f such that i = f(p). This represents 

constraints in the system or trade-offs corresponding to cost-benefit dependencies (for 

general discussiolls see Dowers et aI, 2005, de Mazancourt and Dieckmann. 2004, and 

Rueffier pt al, 20(4). Then, using (3.2.7), we obtain the following function: 
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(3.3.1) 

We shall refcr to 81'1 (P2) as the mutant's fitness function, since it is (by the argument 

of Appendix A) sign equivalent to the dominant eigenvalue of the invasion .Jacobian. 

This eigenvalue is taken as the standard definition of fitness (Geritz et a.l, 19(8), but 

any sign eqllivaknt quant.ity is acceptable (e.g. Giafis, 2007). 

Sillce 81'1(pd = 0, we cau w-write (3.3.1) as: 

8/11 (P2) = 8 pl (P2) - spl(pd 

Q(pt} [f(P2) f(pd J-l(pd(P2 -- pdl (3.3.2) 

From (:U.2) wt' set' that a cost-benefit interprptation of -i = f(p) suggests 

]' (p) > 0; othmwise both contrihutions in the second factor will have the same sign. 

The sign of Q(Pl) plays a role here as discussed later. 

3.3.1 Location of singularities 

Au evolutionary singularity p' occurs at any point at which the partial derivative 

Us!,! (P2) / ()P2 ('valuated at PI = P2 = p' is equal to zero. At such a point, the partial 

derivative as1.! (P2)/()Pl will also be zero (Geritz et aI, 1998). Differentiating (3.3.2) 

wit h resped to P2 and setting this equal to zero, we have 

Q(;/) [J'(p*) - fl(P*)] = 0 (3.3.3) 

and so t here is a singularity at any point p* where one of the following expressions 

holds: 

Q(p*) = 0 (3.3.4) 

or 

j'(p*) = ".(p*) (3.3.5) 

The expression Q(p, i) = 0 describes a straight line in (p, -i) space (see Ap­

pendix B). Condition (3.a.4) indicates t.hat there will be a singularity at any point of 

intersection hetwecll the trade-off function and the line Q(p, i) = O. Condition (3.3.5) 

tells us that there will be a singularity at any point at which the gradient of the trade­

off function is equal to the value of It. These are new results which can be used to 

locate all the evolutiona.ry singularities easily. 
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3.3.2 Classification of singularities 

Having located till' singularities, the next step is to cla~sify each singularity a,s an 

aUractor. a repl'llor, or a hrallching point.. To do this we need to use the second order 

partial derivatives of the fitness function. Define a and b as follows: 

13y diffl'n'lltiatill~ (:3.:3.2) twice with respect to P2, we obtain the following expression 

for 11: 

b = (J(p*)j"(p*) (3.3.6) 

and by difft'relltiating (:L3.2) twice with respect to Pl, we find 

n = -q(p*).f"(p*) - 2 [dQ(P) I (J'(p*) - p(p*») - dJ1(p) I Q(P*)] 
dp p=p' dp p=l" 

(3.3.7) 

and this expressioIl can be silllplified using either (3.3.4) or (3.3.5) as appropriate. For 

a singularity which satisfies (3.3.4), we have 

a. = -2 [dQ,(P) I (f'(p*) - Jl(P*»] 
dp l'=p' 

(3.3.8) 

",hill' for a sill~ularity which satisfies (3.:3.5), we have 

a Q{p*) (2 dp,(p) I - J"(P*») 
dp p=p' 

= -b + 2 dll{p) I Q{p*) 
dp p=p' 

(3.3.9) 

Now, n singularity p* is evolutionarily stable (ES, or by common usage ESS) 

if Ii < 0 at p', and this means that no nearby mutant can invade. The singularity p* 
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is convergence-stahle (CS) if 0.- b > 0, and this means that a nearby mutant can he 

invaded by lllutants which are even clos('r to the singularity (Geritz; et a1. 1998). 

The above results and definitions provide us with the tools we need in order 

to classify any :,;ingulaTity which lIlay arise, as described below. 

Singularities with q = 0 

Suppose that p*satisfit's (:{.:H) hut not (:U.5). In this case b = q(p*)f"(p*) = 0, 

and so p* is marginally ESS. It turus out. that p* Illllst also he CS. To see this note that. 

p* will be CS if a > () (since b is zero). There are two cases to consider: (i) f'(p*) < J.Lo 

and (ii) .1"([1*) > 1'0, where /1·0 is the gradient of the line Q = 0 in (p, i) space. The two 

cases are dealt with below. 

To begin with, note that Q is positive below and negative above the line q = 0 

in (p, i) space (see Appendix B). If f'(p*) < J.Lo, then we have Q(p" - t, f(p" - f)) < 0, 

Q(p', f(p"))=O, and Q(p* + f, f(p" + «,)) > 0, for small «' > O. Therefore d~(P) I 
P p=p' 

is positivl', and so u = -2 [d~f;) Ip=p. (J'(p*) - /10))] > O. A similar argument shows 

that if f'(p*) > 110 then d~(:J) I must be negative and hence a > ° and p* is CS as 
I l'=p' 

claimed. 

Thus if Q(p*) = 0 and f'(p*) t- Ilo, then p* is a marginally ESS attractor. 

Singularities with Q i= 0 

~ow suppose wp have a singularity p* which sathifies (:J.:~.5) but not (3.3.4). Us­

ing (3.3.G), this singularity will be ESS if and only if Q(p*) and J"(p*) have opposite 

~iO"lIs. Using (:3.3.!J), we lIeed to find dld~) I in order to determine the value of a; 
<:> p=p* 

it turns out that. t.his partial derivative lllust always be zero (see Appendix C), and 

therefore a = h. 

SinCl' a = -b, a singularity of this type must either be (i) both ESS and CS, 

or (ii) neither ESS nor CS (note that branching points, which are CS but not ESS, arc 

llot possible in the cmrent setting). Thus, using (3.3.6), there are four possible cases: 

Q(p*) < 0, f"(p*) > ° ==} p* is an attractor (ESS, CS) (3.3.10) 

Q(p") < 0, f"(p") < 0 ==} p* is a repellor (not ESS, not CS) (3.3.11) 

Q(p*) > 0, fl/(p") > ° ==} p' is a repellor (not ESS, not CS) (3.3.12) 

Q(p*) > 0, f"(p*) < ° ==} p* is an attractor (ESS, CS) (3.3.13) 

l\'ote (see Equation (3.3.2)) that if Q > ° then an increase in i is a benefit and an 

iucrease in p is a cost; on the other hand, if Q < 0 then an increase in i is a cost while 
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an iucn'H.se in p is it henC'fit.. Therefore t.he above condit.ions can be re-written as: 

f deccll'ratillgly costly ==} p* is a repellor (not ESS, not CS) 

f acceleratingly costly ==> p* is an attractor (ESS, CS) 

It can also be shown (see Appendix C) that for allY singularity p* which 

satisfies (3.:l.5), we lIlust have that 

- =0 dQI 
dp 1'=/1' 

Thus, the value of Q is either locally maximised or locally minimised at p*. 

Singularities which satisfy both criteria 

l\ow suppose we have a singularit.y which satisfies bot.h (3.3.5) and (3.3.4). In this 

case (l aud b will be zero, and the singularity will be on the borderline of both the ES 

and the CS conditions. 

3.4 Some examples 

Here we present four examples which illustrate how the use of different trade-off 

C:llrVf'S can l'1'!mlt in ciiffel'l'nt numbl'rs and types of sing1l1arities. Figure 3.1 shows some 

contours of the function Q for our chosen set of parameter values, and in particular 

shows the location of the liue Q = O. In order for the relationship i = f(p) to represent 

a tnuk-otf, f !llust be a.n increasing function of p (as discussed in Section 3.3). The 

gl'lwral form of the trade-off functions used is as follows (White et ai, 2006): 

(• :) (1 P I'm... ) 
. "'''fl,r - l'1T1in - Pma.J'-Pmin 

f (p) = I mll:z; - (1 + n(p-Pmin) 
pnULX -7J17un ) 

(3.4.1) 

The vahll' of the parameter (t determines the curvature of the trade-off function. The 

vallie of (} is taken to lie ill the int.erval (-1,00). If Q lies ill (0,00) then the trade-off 

is acceleratingly costly. If (x lies in (-1,0) then the trade-off is deceleratingly costly. 

We use pairwise invasibility plots (PIPs) (Geritz et ai, 1998) to illustrate the 

examples. These show the sign of the mutant's fitness for all possible combinations of 

1'1 and P2· TIll' mutant's fitness along the leading diagonal is always zero, because the 

retiident populat.ion is at equilibrium and mutant and invader are identical. Evolution­

ary singularities occur at any point of intersection between the leading diagonal and 

anot her line along which the mutant's fitness is zero, while the pattern of signs around 

a singularity determines the nature of the singularity (Geritz et ai, 1998). 
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For each exalllple below we use a PIP ane! a plot of t.he line Q = 0 and 

til(' tradf'-off function t.o illustrate th~ way that the singularities shown in the PIP 

correspond to difIerent points along the trade-off function. We also show the results 

of simulating the mutation-selection process in a multi-strain model, to show how the 

resident strategy evolves either towards an attractor or away from a repellor (Miller et 

aL 2005; White and Bowers, 2005; Bowers et ai, 2(05). 

3.4.1 An attractor 

For this and til(' remaining examples, i is constrained to he an increasing function 

of JI (White et ai, 2006): 

(i -.;.) (1 P-Pm",) 'rnax "m'l'll - , 
J(p) - ,j - Pma.l'-Pnun 

- tnLal' 
(1 + <.(P-Pmi,,)) 

pmax-PmHl 

(3.4.2) 

TIIP PIP (Fig1\l'e 3.2( A)) shows that there is a singularity llear p = 0.6. The 

patt.el'll of signs arollud the singularit.y (minus signs above and below, plus signs to the 

left and right) indicates that it is au attractor. 

Figure 3.2(B) shows the trade off function and the Q = 0 line in (p, i) space. 

There is no point of intersection between the two lines, and so there are no solutions 

to (3.3.4). The point p* on the t.rade-off curve at which (3.3 . .'») is satisfied (i.e. the 

slope of the trade-off curve is equal to the value of the function p) corresponds to the 

singularity identifkd in the PIP. Solving (3.3.5) numerically yields a value of p* = 0.597. 

The t.augl'llt to the trade-off' curve at (p*, J(p*)) is also shown in the Figure. 

The results of a dynamical simulation for this scenario are shown in Fig­

ure 3.2(C). Starting wit.h an initial resident strain with a value of p around 0.2, evolution 

proct'cds via slllall Illutations t.owards the attractor p*. 

Uot h tlw PIP-based approach and the dynamical simulations corroborate 

the algebraic t.h001'), of Section 3.3. Sinee nummical evaluation gives Q(p*) < 0 and 

.f"(p') > O. Statt'lltellt. (3.3.10) indicates that p* is indeed an attractor. 

3.4.2 A repellor 

Tllp PIP (Figure 3.3(A)) shows that there is a singularity near p = 0.24. This time, 

the pattei'll of HignH around the Hingularity (plus signs above and below, minus signs to 

the left a.nd right) indicates that. it is a repellor. 

Figure :U(B) shows the trade off function and the Q = 0 line in (p, i) space. 

Thf're is no poiut. of illtt'rsl'ct.ion between the two lines, and so there are no solutions 

to (3.3.4). Solving (3.3.5) numerically yields a value of p* = 0.237. The tangent to the 

trade-off curve at (p*, J (p')) iH also shown in the Figure. 
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TIll' dynamical simlllation illustrated in Figure 3.3(C) shows evolution directed 

away fwm tIll' siuglllarity p' and towards til(' extreme value p = O.l. 

Siuce evaluation give::; Q(p') < 0 and J" (p') < 0, Statement (:3.3.11) confirms 

that p' is a repl'llor. 

3.4.3 Multiple singularities (1) 

The PIP in Figure 3.4(A) shows three singula.rities, which we will refer to as pi, P2' 

and P3 (where pi < P2 < P3)· The central singularity P2 (around P = 0.73) is a repellor, 

while pi and pj are marginally ESS attractors. 

Figurp :~.'l(I3) shows til(> trade off function and the Q = 0 line in (p, 'i) space. 

There are two points of iutersection between the two lines, and so we expect to find 

two solutions to (3.3.4). Solving (3.3.4) numerically yields values of pi = 0.531 a.nd 

])3 = 0.~5'1. Wl' call also solve (:3.:3.5) numerically to fiud 1)2 = 0.730. 

A dyllCuuical simulatiou for this scenario is shown in Figure 3.4(C). Starting 

with an initial n'sicieut strain wit.h a value of p close to the repellor pi, evolution 

proceeds via slllali lllutations away from the repellor and towards the lower attractor 

pi· 
For pi we have Q > 0 and f" > 0, and so (:3.:l.11) confirms that P2 is a repellor. 

3.4.4 Multiple singularities (II) 

The example shown in Figure 3.5 is similar to the previous example except that the 

curvature of the trade-off function has been changed from concave to convex. There 

arc still a single rcpdlor (P2 = 0.652) and two marginally ESS attractors (pI = 0.532 

and P3 = 0.842). 

This example and the previous one illustrate the point that if the trade-off 

function intersects the line Q = 0 at two distinct points - Pa and Pb, say (with Pa < Pb) 

_ thell (here must he a point Pc (where Pa < Pc < Pb) corresponding to an evolutionary 

repellor. 

For Ji2 we' have Q < 0 and 1" < 0, a.nd so (:l.:1.11) confirms that. P2 is a repellor. 

3.5 Discussion 

We have npplie'd thl' methods of Adaptive Dynamics to the chemostat model of 

I\littJer (1996). This approach ha."l enabled us to develop and extend Mittler's work, 

awl ill particular to model the continuous evolution of temperate phage strains via 

slllall lllutations. 

\Ve have shown that the location and nature of the evolutionary singularities 

depends 011 tht' shape of the function f (which relates the parameters i and p) and also 
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011 thc positioll of f rclatiw to t.he straight line q = O. Marginal attractor singularities 

occur at points of intersection between f and the q = 0 linc. Singularities also occur 

at points along J at which .f' is equal to the value of the function Jl: at a singularity of 

this type, the value of IQI is locally maximis('d or minimised. 

\Vc have established that. in contra."t to other studies in adaptive dynamics 

(e.g. Boots alld Haraguchi (1999). White and Bowers (2005), ~liller et al (2005)). 

evolutiollary branching docs not occur ill the present setting. It would be instructive 

to carry out experimental work into the occureuce of branching in real populations of 

temperate phages. 

The gradieut of the Q = 0 line is equal to the value of the fUllctioll Jl and 

is therefore always positive (a..<; shown in Appendix B). However, any change in the 

non-evolving parameter values (e.g. the input concentrations of resources or sensitive 

hacteria) which alters the equilihriumlevels of the populations will also alter the q = () 

gradicllt, and possihly the nature of any singularities. For example, a repellor at which 

the value of Q is initially positive will becollle an attra.ctor if t.here is a change in the 

parallleter value:; which causes the slope of Q = 0 to decrease sufficiently; i.e. the 

singularity now appears on the other side of the Q = 0 line, so that its Q value is 

lwgative. Thl'n>fore the choice of parameter values is particularly important in cases 

wlwre singularities occur close to the Q = 0 line. 

Provided that. i is an increasing function of p, then it is possible for 1 to 

iutersect thl' liue Q = () at two seperatc points, and thrse will correspond to margina.l 

ESS aUractors. \\'heu this happens, there will always be a repellor in between the two 

attractors, a .. " in Figures 3.5 and 3.6. 

As mentioned in the introduction, phage lambda and other well-studied tem­

perate phages have evolved to have values of i and p at the lower end of the ranges 

of possible values. In the adaptive dynamics framework, this could occur as a result 

of evolution away frolll a repe110r (a..,> in Figure 3.4). Phages with low values of i and 

p are likely to perform better than other phages when the environment is subject to 

vtll'iatioll, :;ince they will be able to survive lean periods (via lysogenic infections) but 

also to cornp('te strongly (via lysis) when resources and sensitive bacteria are plentiful 

(set' t-.littkr (1996) for a discussion of this point). 

By assuming that l' > 0, we have been able to interpret i = 1(p) ill terms of a 

cost-lwl1rfit rdationship in which till' function 1 rt'prC'sents it trade-off. If we a.llow an 

interprPtation ill which, while 1 represents a constraint, changes in i and p are such tha.t 

.f' < O. then our results change. III this case there will be a marginally ESS attractor at 

the (single) point of intprsediou between 1 and the line Q = 0 (if such a point exists). 

However, 110 other singularities are possihle: the contours Q = x in (p, i) space are 

straight lint'S with It positive gradient (as shown iu Appendix B), and therefore if 1 ha..<; 
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a nC'gative slope there will be no point on f whose tangent coincides with a contour of 

q. and therefore no puint at which ICdI is either locally maximised or locally minimised. 

An example of this type of scenCU'iu i::; shown ill Figure 3.6. 

We have shown (Aplwndix A) that whereas a telllperate resident phage can 

be invaded by a vil'l\h'nt mutant (depending on the sign of (dt), a virulent resident can 

not be invaded by It temperate mutant, in the present setting. This raises the question 

of why temperate phages emerged in til(' first place (assurning that they have evolved 

froItl virulent phag('s). The role uf l'IIVil'Olllllt'utal Ilul'tllatilln is likely to forIll pa.rt of 

the allswer to this. Population models which include an ellvironnwntal fluctuation term 

ha\'!:' beell discussed by Stewart and Levin (1984) and Mittler (1996). In the present 

chapter we have considered a constant input of resources a.nd sensitive bacteria to the 

chclllostat, but it would be intercsting to study models of phage evolution in the context 

of a flllctllating pnvirol1mont. 

3.6 Appendix A: The fitness function 

Here wp present au out line of the method used to derive tIl(> fitness function .'I
P1 

(P2). 

Let R*, S*, L r, and Pt be the equilibrium values of R, S, L 1, and H calculated 

from equations (3.2.1), (~U.2), (3.2.3), and (3.2.5), with L2 = P2 = D. To see what 

will happen if a small IlI11uher uf mutant type 2 phages aud lysogens emerge, we can 

consider the liuearized Systl'IU 

dL'2, 
clf 

dP2 
dt 

Now we a~surne t.hat ])2 and i2 are both greater than zero. Strain 2 and its 

lysogen can invadp when rare if the above system has at least one positive eigenvalue. 

Thl' eigenvalues are the solutions of 

(a - '\)(d - .\) - be = 0, 

where a = r H* /(R* + k) - 72 -~ -w, b = P2(IS·, r. = (H2, and d = {3(1- P2)<5S* -8Li -w. 

There will be a positive eigenvalue if either ad < be or ((I. + d) > 0, or both. In fact, it 

is only u('c('ssary t.o coushier the condition ad < be, since it can be shown that it is not 

possihlt, for both (t aud d to be positive (see l\1ittler, 1996); if one of them is positive and 

the other is llegative then then there will certainly be an positive eigenvalue. because 

ad < lw. If hot Ii (/ and Ii are negative then (/ + d < 0, aud so there will only be a 
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positivc eigcnvalue if ad < be: holds. Thus, checking the condition ad < be covers all 

possihilites. 

It is strai!!;htforward to show that t.he condition ad < be is equivalent to 

when' l(p.i) = j)*/!n*; /I.(p, i) = 65*['*/£*; and Q(]I,;) = (dJl6S*J>*-~ (JiL*)/J>* 

(t\1ittler, 1996). 

In the special case of a viruleut mutant, i.e. P2 = i2 = 0, then there are no 

L2 lysogens and there is It single invasion eigenvalue /\ = (-JoS· - tSLi - w = Q(1I1, i l ). 

Thereforc a resident strain can be invaded by a virulent lllutant if Q(PI, iJ) > 0; on the 

other hand, if q(PI, il) < 0 then a virulellt lUutant can not invade. 

III the special case where the resident phage is virulent, i.e. PI = il = O. 

then Q(Pl.iJ) = 0 and so the fitness of an invading mutant (Le. Q(Pl, id2')'(pl' iJ) + 
Q(PI. iIJ i 2 - Q(PI, i l )ll(PI, iJ)P2) will be zero for any values of P2 and -t2' Therefore no 

mutant phage can invade. 
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3.7 Appendix B: The Q function 

Here we show t.hat. given a real number :r, the line Q(p, i) = ;T (if it exists) is linear ill 

(p, i) space. Setting the right hand sides of equations (3.2.1), (3.2.2), (3.2.3), and (3.2.5) 

all eqllal t.o zero (with [>'2 = L2 = 0), aud using the relationship Q(p, i) = :r, we obtain: 

0= w(Ro - R*) -- f1'(8* + Li)R* I(R* + k) 

0= 

0= 

()= 

w(So - SO) -- TS* R" I(R* + k) + ~Li - 8S* Pl" 
;'JrLIR f3~Ll /1wLI 1'+ ------

n(R+k) PI PI 
X + (jdS - 8L 1 - w 

Since p and i do not appear in the above equations, the values of R*, S*, Lj, and Pt 

are consta.nt along the liue Q(]l, i) = :r. 

Since Q(p, i) = U3P18Pt S' - fJ'ilLi)/ Pt, the line Q(p, i) = x must be a straight 

line through the origin with gradient 6PtS*/Lj and intercept -xPI/(/3L1 ) (where R*, 

S*, Lj, and Pt are obtained from the four equations above), Note that the gradient is 

equal to the value of the function 11, and that all points along the line Q(p, i) = x must 

have the RaIUe value of Jt. 

To show that Q(p,oi) is positive for all points below the line Q(p, i) = 0, 

we can consider the single point (p,O), where 0 < p < 1. At this point, we have 

Q = (f-Jp6S* Pt)1 Pt > O. 

To show that Q(p, i) is negative for all points above the line Q(p, i) = 0, 

we can cOllflicier the single point (0, i), where 0 < i < 1. At this point., we have 

Q = -HilLlIPt < o. 
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3.8 Appendix C: Derivatives of J.L and Q at p* 

In this section, we aSSUlllC that p* is a singularity which satisfies Equation (~C3.5) 

of the text.. 

(i) DiffPrcntiating /1: 

To find the dNivatiw of I' at p., we begin by setting the right hano sioes of Equa­

tions (3.2.1), (3.2.2), (3.2.3), alld (3.2.5) all equal to zero (with P2 = £2 = 0 and 

i = f (p)), to obtain fom equations of the form: 

fI (R, S, [." P,p) = 0 

h(R, S, £, P,p) = 0 

h(R, S, £, P,p) = 0 

f4(R,8,£,P,p) = 0 

and HOW we call write 

Thus 

a II R' + a It s' + 8 II £' + 8 II p' + 8 II = 0 
aR 8S 8L 8P 8p 

a 1'2 R' + 81'2 s' + 8 h £' + 81'2 p' + 81'2 = 0 
dR as UL 8P Up 
;) f· iJ f· /) f aI· aI· _._.l R' + ~s' + -.:...2£' + _,l p' + _.1 = 0 
d H' as U L 8 P 8p 

aft H' + (}f4 s' + 8f4 L' + 8f4 p' + 8f4 = () 
aR 88 ilL OP 8p . 

The vector all the right hand side of the above expression apparently ha.'i two 

non-zero elements. However, for a singularity which satisfies Equation (3.3.5) of the 

text, these cntries vanish and we are left with an equation of the form 

JX=O 
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and X = (0000) will he the' only solution of this equation, provided that .J is invertihle. 

To see that .J is indeed invertible, relllember that we are assuming that the equilibriuIIl 

(R*, S", L *, P*) is stable. The.J acobian matrix used to determine stability b the same 

as the matrix .J. Therefore the determinant of .J must be nOll-l\erO, and hence J is 

invertihle. 

Thus, we have shown that 

(H', S', L', P') = (0,0,0,0) (el) 

at p'. l3ut /-l = SS J> / J., so we must also have that /-l' = o. 

(ii) Differmtinting Q: 

Diffen'utiating q with respect to p, aud using (el) above and Equation (3.3.5) of the 

text, we find that 

dQI =0. 
dp p=p' 

Thus the value of IQI is either locally maximized or locally rninimized at p •. The second 

order derivative of Q at p. will determine which of these possibilities is the case, but 

the expression for this quantity involves the second order derivatives of 8, L, and P 

(with respect to pl, for which we have not been able to obtain analytical expressions. 
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Figure 3.1: Contour plots for the function Q. Each contour is labelled with its respective 
Q vallie. The contours are all straight lines, and the gradient of each line is equal to 
the vallie of the function IJ along that line. Parameter values: Ro = 100, 8 0 = 2 X 108

, 

IS = lO--!'.!1 = 100. (= 0.0001, ,. = 0.7, k = 4.0, f. = 5 X 10-7
, W = 0.2. 
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Figure 3.2: An attractoI' singularity (A) PIP showing the attractor at p = 0.6. (B) 
Plot of trade-off curve and the line Q = 0 line. The tangent to the trade-off curve at 
th(' singularity is also shown. (C) Dynamical simulation. Parameter values: a = -0.7, 
other parameters as in Figure 3.1. 
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of trade-off curve and t.he line Q = 0 Iiue. The tangent to the trade-off curve at the 
singularity is also shown. (C) Dynamical simulation. Parameter values: Q = 10, other 
pa.ra.meters as in Figure 3.1. 
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in Figure 3.1. 
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Chapter 4 

Modelling the Stability of Stx 
Lysogens 

4.1 Introduction 

Like all lambdoid phages, Stx phages are temperate - following adsorption to 

an E. coli cell, they arc capable of both lytic and lysogenic reproduction. During lytic 

reproduction, Ulultiple copies of the infecting virus arc constructed, and then released -

toget.her with toxin molecules - through hacteriallysis (cell burst). Lysogenic reproduc­

tion is the mechanism by which the phage DNA (or prophage) becomes incorporated 

into the bacterial genome, and is then replicated passively during the E. coli replication 

cycle. A lysogen may later enter the lytic cycle through a process known as 'induction'. 

III lambdoid pha.ges, a molecular switching mechanism governs the selection 

of eit.her the lyt.ic or lysogenic pathway, and also determines the rate at which lysogens 

undergo induction. Lambda prophages are generally very stahle, with an intrinsic in­

ductioll rate of t.he order of 10-7 pel' cell per generation (Aurell et al., 2002; Little et 

aI., 1999). However when the survival of the hacterial host is threatened by adverse 

environmental condit.ions, such as through starvation or exposure to ultra-violet light, 

the rate of lamhda prophage iuduction is known to increa.<;e (Ptashne, 2004). It has 

been shown t.hat. t.he lysogcns of the Stx phages 933W and H19B induce more readily 

than lamhdoid phages which do not encode Stx toxin, wit.h intrinsic induction rat.es 

of 1.4 x 10-4 and 5 x 10-5 respectively (Livny and Friedman, 2004). Such Stx lyso­

gens will illduce at. a lower dosage of 'inducer' (e.g. UV light) compared with laInbcla 

lysogens, and t.his phenomenon is unlikely to be directly caused by the presence of 

the Stx toxin genes themselves since they are not involved in the switching mechanism. 

Therefore 033W and 1I19B have been described a.s ha.ving 'hair-trigger' switches (Livny 

a.nd Friedlllan, 2004), a phrase used to convey the order of magnitude difference iu in­

ductioll sellsitivity uetweell these lambdoid Stx phages and the reference bacteriophage 
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lambda. 

Iu the genome of an Stx phage, the stx gene is located downstream of the lysis 

gene:; (Uukllleir and Schmidt, 2000). Stx lysogens release Shiga toxins only when the 

bacterial cell is lysed, either following the initial infection event or following induction 

of a ly:;ogcn. Thus the factors regulating the lysis-lysogeny switch play an important 

role in the regulation of Shiga-toxin productiun and release (Tyler et aI., 2004). Using 

an approach ba~ed on the methods of Ackers et a1. (1982) and Shea and Ackers (1985), 

Santillan and Mackey (2004) developed a mathernatica.l model which addresses the 

high level of stability of lambda lysogens. Various differences between the physical 

cOUlponent.s uf lambda and Stx switches have been reported in the literature (e.g. 

Koudelka ct aI., 2004: Tyler et aI., 20(4). The aim of this chapter is to contribute 

to the underst.anding of the sensitivity of the molecular switch by investigating the 

impacts of known differences in the molecular binding affinities and structure of Stx 

and lambda phages on switch dynamics and lysogen stability. The findings of this 

Chapter were published in Evans et a1. (2007). 

4.2 Modelling the switch 

In lambda lysogens, the concentrations of two regulatory proteins, CI and Cro, 

determine whether the lysogcnic statc is maintained or the lytic cycle is initiated. The 

protein CI represses induction amI lysis, as described below, and is therefore referred 

to as 'the repressor'. The CI and Cro proteins regulate the expression of two genes, cI 

and cro, in a feedback mechanism determined by the structure of the genome region 

associated with the switch (Figure 4.1). The OR region of the genome is situated 

between the genes cI and erv, which code for CI and Cro respectively, and contains the 

three binding sites On1, On2, and OR3. Molecules of CI and Cro in their dimerized 

form (dl'lloted CI:! and Cro2) bind to these sites and in doing so regulate the expression 

of the two genes. If a Cl2 lllolecule is bound to ORI or OR2 then an RNA polymerase 

(RN AP) molecule CHllllot bind to the C'ro prolllOter PR, alld so transcription of ao is 

blocked. Similarly. if a CI2 or Cr02 molecule is bound to On3 then transcription of cI 

is blocked. 
The typical molecular configuration at the right operator (see Figure 4.1) in 

a stable lambda lysogen is that ORI and OR2 are both occupied by CI2 repressor 

molecules, while OR3 is unbuund (Ptashne, 2004). In this configuration, transcription 

of e1'O is 'oft" but trallseription of cI is 'on'. The bound repressor molecules continually 

dissociate from the operator sites, but are replaced by other nearby repressors. The 

lysogenic state is maintained as long as the concentration of repressor molecules is such 

that there will always be sufficient nearby repressor molecules to bind to ORI and On2 
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when these sites become vacant. If the repressor concentration falls, transcription is 

init.iated by RN AP binding at the promoter site PR during a transient period when 

ORl and OR2 are unbouud. Transcription of eTa ultimately leads to lysis of the cell 

and the release of new phage particles. 

An important feature of the regulation of the switch is cooperative binding 

between repressor dimcrs. If a C [2 molecule is bound to OR 1 then the probability of 

a CJ'2 molecule binding to 0R2 is increased, i.e. the presence of the C[2 molecule at 

ORl has thl' ('[['cd of illCl'e(lsing the billding affinity betwecll CI2 and OR2. 

A simple Illathematical model of the lambda switch was presented by Ackers et 

al (1082). Tht' Illodel is based around the three binding site8 at the right operator. Re­

pres80r dimers hind to these sites with probabilities determined by the binding affinit.es 

of the system. Dissociation of repressor dimers, and association of repressor monomers 

is also allowed for. The binding affinites were calculated from the results of earlier 

experimental work (Johnson et ai, 1979). At any given time, each binding site is either 

unoccupied or bOllnd hy a repressor dirner. Thus there a.re 8 possible binding configu­

rations. The results of the lllodel indicated that cooperative binding between repressor 

molecules at 0111 and OR2 plays an important role in maintaining the lysogenic state, 

and also in allowing Iysogens to be easily induced when the repressor concentration 

falls. 
The static model of Ackers et al (1982) was later used as the basis for a 

dynamica.l model which also included Cra dimers and monomers, the enzyme RN AP, 

and the two promoters PR and Pm.! (Shea and Ackers, 1985). In this model, at any 

given time a binding site may either be unbound or bound by a dimer (CI2 or Cr02). 

Similarly, a promoter may be unbound or bound by an RN AP molecule. There are now 

a total of 40 possihle binding configurations (bearing in mind that. certain configurations 

arc excluded, P.g. OR3 and PRftJ cannot both be occupied simultaneously). 

Using It ulOdcl ba.'ied on the work of Shea and Ackers (1985), Reinit.z and Vais­

nys (1990) explored whether or llot the observed behaviour of the lambda switch could 

be accounted for by existing knowledge of the regulatory mechanisms. It was found 

that there were inconsistencies between observations and the theory. In particular, the 

Icwl of PR repn'ssion predicted by the model would not be sufficient to maintain the 

Ivsogeuic statl'. This implied that an important component of regulatory activity wa.<; 

missing [rom the model. 

It has bepn proposed (Dodd et aI, 2001) that repressor molecules bound to the 

left operator of phage lambda contribute to the stability of lambda lysogens. The left. 

operator region (h conta.ins three binding sites: OL1, OL2, and OL3. Dimers of CI and 

ero can bind to the left operat.or binding sites. Experimental evidence due to Dodd 

et al (2001) and Pta.<;hlle and Gann (2000) indicates that repressor molecules bound 
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at t be kft awl right. operators can interact cooperat.ively to form a stable complex, a1'l 

illustrated in Figurc 4.1. 

The model of Santillan and Mackey (2004) extends the Shea and Ackers (1985) 

Illodel to iudude the three bindiug sites of Ch, and cooperat.ive interactions between 

repressor dimers at the left and right operators are allowed for. This model is presented 

below, since it provides the ba.'lis for my own modelling work. This is followed by a 

description of the method nsed to extend the model in order to model Stx lysogen 

st.ability. 

4.2.1 The lambda model 

TIl(' delay differpntial pqllation model of Santillan and ~1a('key (2004) captures the 

biochelllical processps that govern t.he lamhda molecular switch. It includes the right 

and left operat.on..;, tbe promoters PH and PHM , the enzyme RN AP, and the proteins 

CI and Cro ill their monomer and dimer forms. The equations are: 

d[Md] 
tit 

d[JfC7"o] 
dt 

d[CIT] 
dt 

d[CroT] 
tit 

k;~/[OHJJ7iAl ([C ]z]TM' [CroZ]TM) + k~J [OHl!RM([Clz]TA-1' [CroZ]TM) 

- bM + Jl,) [Md] (4.2.1) 

kc/"o[ORl!H([Clz]TM' [Cro2]TM) - (rM + /-l)[Aicm] (4.2.2) 

(4.2.3) 

(4.2.4) 

where [Aird and [Mr,·,,] are the concentration of r./ and era mRNA molecules respec­

tively, and [CIT] aud [OroT] denote the total concentration of CI and Cra monomers 

respectively (here the t.otal number of monomers means the number of free monomers 

pIns twice the nUlllber of dirners). A quasi-steady-state assumption is used to deter­

mine the protein dimer ('oncentratiom; in terms of the total monomer concentrations 

(Santillan and l\lackey, 20(4). The other symbols which appear in the above equations 

arC' defined in Tables 4.1 and 4.2. 

In this lllodpi thC'fc are 1200 possible molecular configurations altogether, 

and for each state i there is au associated binding energy Ei which is the aIllount 

of ('nergy which would be required to disa.'lscmble the configuration (the formula for 

calculating binding ell('rgies in phage lambda is a specific ca.'le of the formula presented 

in Sectioll 4.2.3). Once the energy of each state has been determined, the probability 

of each state is calculated wit.h the technique used by Ackers et a1. (1982) and Shea 

aud Ackers (1985): 
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Pi = exp(-E;/RT) [CI:,!ln, [Oro2Vi'[RNAP]Il, 
Z 

(4.2.5) 

where R is the ideal gas constant and T is the absolute temperature (taken to be 37°C). 

The partition [unction Z is given by 

(4.2.6) 

where (ti. ;3;. allel 51 are. respeetively, the numbers of C 12 , Cro2, and RN AP molecules 

bound to t.he complex in the i-th state. 

The quantities g are used to calculate the I functions. The probability that PH 

is houlld hy all RN AP molecule, I R. may be calculated by summing t.he probabilities 

of all the sl ales in which P R is bound by an RN AP molecule. Similarly, IJzM can 

be calculated hy slllllllling the probabilities of all the stat.es in which both (i) Pm.! is 

bouud b~· all RNAP molecule and (ii) OR2 is bound by a CI2 dimer. Fillally, IRM is 

calculat.ed as the SUIll of the probabilities of all the states in which (i) PRM is bound 

by an RN AP molecule and (ii) O/i2 is not bound by a CI2 dimer. 

4.2.2 Properties of the model 

The model predicts that, for a given set of parameter values, there will either be one 

or t.hree equilibrium points. For low values of the CI degradation rate {-red there will 

generally be It single stable equilibrium corresponding to lysogeny (i.e. the repressor 

cOIlc('utratioIl will he relatively high and the Cro concentration will be relatively low 

at this point). If ~lcI is increased sufficiently. two additional equilibria will appear via a 

saddle uode bifurcation, one of which is stable and corresponds to lysis (low repressor 

concent.ration ami high Cro concentration) while the other is unstable. If "rd is increased 

even further, then the unstable and lysogenic equilibria will collide and annihilate each 

other, leaving only till' stahl<' lytie equilibrium. 

The steady-states of this model of CI and Cro concentrations are t.he points 

of intersed ion Iwtwppn two curves, ~ = 0 and e = 0, where ~ and f) a.re defined as 

follows (Santillan and 11 (lckey, 2004): 

<1'(-('1 ] [C ]) Pel [0 ](A q I q + e IS ) '*' l-- T, ,TO,], ,"tel = ''1M + tL R :<:/ RM 'd fi.M 

- ('Yd + JL)[C h] (4.2.7) 

and 
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(4.2.8) 

The symbols which appear in the above equations are defined ill Tables 4.1 and 4.2. 

TIl(' <'<Illation 8([G h], len)T]) = 0 determines a single curve in 

([Ch], [CroT)) space, whereas the equation cI>([Ch], [CroT]",·J) = 0 determines a 

family of curves in the same space (one for each value of lel, the degradation rate of CI). 

Since exogenous (exposure to ultra-violet light) and endogenous (starvation) factors 

infl uenc!' ~Id, it is included as an argument of the function <I> so that the behaviour of 

tIl<' syst.em unc\<'r different degradation rates can be explored. 

4.2.3 Generalization of the model 

For t he purposes of this chapter. the main modelling concerns relate to the functions 

Jinr' fR/II' and JR. which use t.he energies of t.he molecular binding stat.es to calculate 

th(' probahilities of RN AP molecules binding to the promot.ers Pm.1 and PRo The 

formula for calculating these cUl'rgies is diffcn!ut for Stx phage compared to lambda, 

owillg to structural diflere!lccs between their switch mechanisms. The formula, gen­

erali;;:ed from Sautillan and 1Ia.ckey (2004), for ca.lculating the binding energy of each 

sLate i is given hy: 

"'D 

I>~G~DVr~LV(i) 

+ 

+ 

+ 

+ , b.GC/'02 rC1'O~ (i)rCI'
02 (;)r°1'02 (i) 

~ 0xln Oyl 0x2 0x3 
X=R,L 

711m(VL ,VH) 

+ , b.G r Ch (i)rCI2 (i) ~ RL Ow OIY 
1.1=1 

+ ' b.GRNAPfRNAP(i) 
~ Px Px 

(4.2.9) 
X=RM,R,L 

where 
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l'\(i) = { 1 
o 

if the binding sit.e or promoter X exists. and molecule Y 
is bOllnd to X (ill state i) 
otherwise 

In the above formula, IlL and I/R denote the nUlllber of binding sites at the left 

and right oIwrators respectively. The terms t1Gf,~AP (X = Rl\f, R. L) represent the 

binding energy of a RN AP molecule bound to the promoter Px. The terms t1G~ xV 

(X = R, L) represent the binding energy of a molecule of Y to the operator site Ox v • 

Th(' t('rrrlS t1G~x.,., 11 represent the interaction energy between two Y molecules bound 

to tIl(' operator sites Oxv anel OX"HI. The terms t1Go
Cro

2 represent the interaction 
X l23 

ellergy hetwef'n 3 Cro2 molecules bound to Ox 1, 0 x2, and 0.\'3. This notation is 

made more explicit in Table 4.3, which contains a list of the binding energies used in 

the model. All of these energies have been determined experimentally for phage lambda 

(Santillan and ~lackey. 20(4). The interaction energy hetween a CI2 hound to ORI/ and 

a C 1'2 bound to (hy «\Plluted hy t1G RL) is also included in the model, although this 

qllantity h<1.s not yet heen measured experimentally and must therefore be estimated. 

4.3 Phage scenarios 

There an' known differences between t.he switches of certain Stx phages and phage 

lambda. The analysis in this chapt.er compares the stahility of phage lamhda lysogens 

with four difft'rl'l1t Stx phagt' "scenarios" (Stx 1, Stx 2, Stx 3, and Stx 4) as shown in 

Table 4.4. The scenarios are obt.ained by varying the number of operator sites in the 

left and right operators, and by varying the value of the parameter AGg~2' 
For phage lambda we have I/R = 3 ancll/L = 3, while for the Stx phage 933W 

we have I/R = 3 but VL = 2 (Tyler et al., 2004). So for Stx 1, 1/£ is set equal to 2, so 

that the effect on lysogen stability of removing O£3 can be examined. 

It hal'> heen sp('culated that 0 R3 does not function as an active binding site in 

some SIx phages (II. Allison, personal communication). For Stx 2 1/£, I/R are set equal 

to 3 ami :2 resped ively 1.0 see t.he effect of removing 0 R3 in isolation, aud then for Stx 

3 both operator sites are absent (i.e. I/L = 2, I/R = 2) to see the combined effect of 

removing both operator sites. 

Thl' 9:.tIW phage is also known to have diff{'r{'nt relative binding affinities 

at the OL and OR operators. compared to phage lambda (Koudelka et al., 2004). In 

particular in most lambdoid phages. cooperative binding between repressors at 0 Rl 

and Ou2 {'nabl{'s repressor molecules to bind to these two sites at almost identical 

concentrations. However, in 933W a 3- to 4-fold higher concentration is neecled for 

repressor to bind to OEl2 compared to ORI (Koudelka et al., 2004). Thus Stx 4 has 
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heen :"uhdividpd iuto ,1 scewuios ((i), (ii). (iii), (iv)). In Stx 4(i), tlU' value of ~Gg~i22 is 
set eqllal to tlip vahll' for phage lambda (i.e. -10.5 kcal /1\1), while in Six (ii), (iii), and 

(iv) the absulute value of this parameter is progressively lowered, io reflect the weaker 

bindillg affiuity in n:3:~\V. III order to lllodel the known structure of 933W 8.'3 closely 8.'3 

possible, the 0 L~l silt, it-; removed from the model for Stx 4. 

For each scenario, Equation (3) is used (with the appropriate values of VI. and 

VR) to calculate the binding energies of each possible molecular configuration. In the 

absence of experimentally determined parameter values for Stx phage, the parameter 

values used are those given in Santillan and Mackey (2004) for phage lambda, except. 

where othf:'rwise illdicated. 

4.4 Results 

4.4.1 Stx Phage scenarios 1, 2, and 3 

Figlln' ,1.2 sh()ws the curves (-) = 0 aud <I> = 0 for buth lambda aud Stx 1. Both 

phages hav() a stead.v state correspollding to lysogeny (shown in C and F), but notice 

that the concentratioll uf CIT at the lysogenic equilibrium is greater in Stxl than in 

lambda. Figure 4.2E reveals that the removal of 0 L3 in Stx 1 has introduced two 

additional stf'ady-states, one of which is stable and corresponds to lysis. However, 

the oVPl'all effect of the absence of 0/_3 on the stability of the lysogenic equilibrium is 

small. This is not surprising because although CI2 molecules bound at 0 L3 and 0 R3 

interact cooperatively (with binding affinity ~GRd and thus increase the strength with 

which tlll'Y are hound to their respective binding sites, it is usually the ca.<;e that in a 

lambda lysogen the OH3 site is unbound (Ptashne, 2004), in which case this cooperative 

interaction is not It factor in lysogen stability. 

With rel = 0, the phages lambda, Stx 2, and Stx 3 are all lysogenically 

lllonostablc. hut for other values of reI these phages may exhibit different properties. 

Figllr<' 4.3 shows the clIl'ves e = 0 and <I> = 0 for lambda, Stx 2, and Stx 3 when rel is 

set tu 0.061 lllin-I; Stx 2 is lllOnostable with a single lysogenic equilibrium (B and E), 

while lambda is decu'ly bistable. This indicates that the lack of an 0 R3 binding site in 

Stx 2 enhances the stability of its lysogens. Stx 3 is bistable for this value of lel, but 

only just. awl cOlllparison of Figures Band C shows that the presence or absence of 

t 11(' (h3 sit.(' has only a minor illlpad on the stability properties of the system. 

TI1l' finding that the absence of OR3 in Stx 2 greatly increa.'3es lysogen stability 

is 110t surprisillg, lH:'cause in phage lambda a Cl2 rnolecule can bind to 0 R3 in order to 

repress the c/ gene and prevent the repressor concentration from becoming too high. 

A large excCss of C12 molecules would reduce the sensitivity of the lysogen to changes 

in endogenolls and exogenous environmental factors, since a high leI degradation rate 
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would then 1)(' llP('(kd in order to flip the swit ch from lysogenic to lytic growth. If 0 R3 

is missing. thf'1l 110 matter how high the concentration of Cl2 becomes. CI production 

will not Iw s\"itdlPd ofT and so tlw switch sensitivity to environmental factors will be 

reduced. 

4.4.2 Stx Phage scenario 4 

A mor(' detailed analysis is presented for Stx 4, which is designed to represent the 

structure (lack of a third (h binding site) and the binding affinities (reatively weak 

binding between repressor and OR2) of 933W. We begin looking at the stability struc­

ture of the system by examining the solutions to the equilibrium equations. Numerical 

measures of the stability of the lysogenic equilibria are then presented for different 

values of "rd, and compare the results for Stx 4 and lambda .. 

Figure 4.4 shows the solutions of the equilibrium equations (with leI = 0) for 

lambda, Stx 4(i). and Stx 4(iii) (cf Table 4.4). The graphs in A and B show that there 

is wry little differem'e between the solutions for lambda and Stx 4(i), although Stx 

4(i) is actually bistable while lambda is lysogenic ally monostable. On the other hand, 

Stx 4(iii) is clearly histable. The three graphs indicate that while the absence of the 

(h:3 site in Stx 4(i) does not make much difference, the weaker binding affinity between 

repressor and O1l2 ill Stx 4(iii) hNi a significant impact on the stability structure of the 

system. 

Figure 4.5 shows projections in ([e IrJ. [Oro'r]) space for lambda and Stx 4(iii) , 

with ~,d =0.20 min -\, for different initial protein concentrations. These projections are 

obtained by numerically solving the delay differential equations comprising the model. 

The graphs illustrate that while lambda is bistable at this value of "tel, Stx 4(iii) is 

lvticallv lllonostable. So it is clear that a lower value of Icl is needed to eliminate the .. . 
lysogenic equilibriulll in Stx 4(iii) than in lambda. This further illustrates the lower 

lysogeIl stability of Stx 4(iii) compared to lambda. 

The way in which the values of ~Gg~l22 and lei determine the stability structure 

of Six 4 arc illustrated in the hifurcation diagram in Figure 4.6. For the range of ~Gg~22 
values considered, there is no region of lysogenic monostability at all, and as the absolute 

value of this parameter decreNies the minimum va.lue of "tel required to elimina.te the 

lysogenic equilibrium decreases, implying that lysogen stability also decreases. 

So far only the presence or absence of lytic and lysogenic equilibria has been 

consitiel'('d. The stability of the lysogenic equilibria were examined by determining 

the lpaciing l'igenvalues. and also by numerical determination of the concentration of 

ero awl the likdihood of repression of the promoter PRo Use of these three methods 

lent rohust ness to the conclusions drawn from the results. The first of these is a 
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staIl<iard mntiwmatical mcthod for stability analysis, and the second and third allow 

biological int ('J"prf't at iOIl of t lit' dynamics of tIl(' system. The quant.ity PH-repression is 

the prohability. given tIIP conceutratiom; of CIT aut! CroT. that transcription of the CTO 

gene is hlocked; a lower vahw of Pu-repressiou means that inductioll of the lytic cycle 

is more likely to o('em. The three methods are illustrated in Figure 4.7. 

The graphs in Figure 4.7 show that the three lllethods of measuring lysogen 

stahility all indicat.e that ill general lysogen stability decreases as leI increases. It is 

also clear that the lysogens of Stx 4(iv), which has the lowest absulute value of t,.Gg~~22' 
are g(>nerally the leal>t stable for a given value of IcJ. Lysogen stability increases as 

LlCg;2 is increased, and there is almost no difference between the st.ability of Stx 4(i) 

and lambda lysugens (which have the same value of LlGg~:2' i.e. -10.5 kcal / M). 

However. the eigenvalue graph in Figure 4.7B reveals an interesting prediction 

of the modeL namely that the stability of Stx 4 and lambda lysogells as measured by 

the leadiug eigPllvallle initially increases as "leI is increased from zero up to the value of 

"Iero (0.016 lllill- 1). The eigenvalue t.hen remains roughly constant (at a value of around 

-(J.l + ~1('1'())' i.l'. -0.036) as rei increases further, until eventually the leading eigenvalue 

begins to approach wro. The initial increase in stability may enable the phage to bide 

its tillle before responding to worsening environmental conditions. A small increa.'le 

in reI lllay lllean that conditions for survival of bacteria are poor, and therefore lysis 

of a host ('cll could l'IHiaugcr the bacterial population. Hence an increasp in lysogen 

stabilit.v IIIay he prudent for small increa.<;cs in "Iel, with initiation of the lytic cycle 

only occurring 01lC(' it is dear that the host cell is in severe peril. 

When tIl(' eigmvalues are calculated for the ordinary differential equation 

model obtained by setting Tel and Tem equal to zero (data not shown), it is found that 

these are alJllost ide1ltical to t.he delay model eigenvalues, both for lambda and the 

four Stx sCl'Ilarios. This indicat.es that these delays do not significantly affect lysogen 

st.ahi1it~'; it also allows liS to discuss the above behaviour of the leading eigenvalue using 

the Illode! without. delay. 

For this lIlodel, the diagonal elements of the Jacobian are: -bllI +jt) = -0.14, 

.-hM + II) = -0.14. -(Tel + Il) = -0.02 + lel, and -bero + J.l) = -0.036. Many of 

the non-diagonal eIellwllts are exactly zero; moreover, the other elements are also often 

sufficiently small t hat it is possible to regard the eigenvalues as perturbations of t.he 

ohO\'(' diagollal ('le1\l('lIts. Thus for leI = 0, the dominant eigenvalue is a perturbation 

of -Il: as "It! iIlITl'aSes. the eigellvalue dose to -("tel + II) remains dominant until it 

becom(,s lllOrl' lH'gat ive tha11 - ("tao + II.) which then dominates. Subsequently nOl1-

diagollal l'lelllt'llts of the .Jacobian approach this element in size and the dominant 

eigellvahl(' approaches zero. This final procedure begins consistently earlier as we move 

throngh llip sCI'IHHios frolll lambda.jStx4(i) to Stx4(iv). 
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4.5 Discussion 

The Stx pilag('s D:3:3\V Hud 1I1913 have been described H. .. <j having 'ha.ir-trigger' switches, 

b('(';)'lIs(' of their gn'atl'r propPllsity for lysogeu iuduction compared to phage lambda.. It 

has bePlI spl'C'ltlatecl tha t (lilt' of the rea:,;on:,; for this in 933\V i:,; the lower binding energy 

betwel'1l 0/12 Hnd rl'pressor, since this results in tighter regulation of the repre:,;sor gene 

(Koudelka et a!.. 20(4), i.e. lower levels of repressor concentration in Stx lysogens. The 

results presented in this chapter support this view, and indicate that a lower binding 

affinity between l'<~pr('ss{)l' moleclllC's and t.he () n2 binding site will result in a reduction 

of lysogc'n st H hili ty. 

The relatively rapid rbe in the observed prevalence of Stx genes since their 

initial discovery ill 1982 could be due in part to the hair-trigger nature of the molecular 

switch and the relative instability of Stx lysogens. Thus, the lysogenic state in which 

the phages are henignly replicated in conjunction with the rest of the bacterial genome 

is less abundant and the switch to lysis more frequent, resulting in propagation and 

dissemination of St x phag('s amongst host populations. Rounds of integration into bac­

terial genomes alld suhsequeut induction to the lytic cycle would dramatically increase 

the opportullities fol' genetic recombination, including the acquisition and spread of 

gelH's that promote the ability of the bacterial host to colonise the intestine (Dziva 

ot al. 200:!). Furtherluof(', the switch is also involved in imlllunity to multiple phage 

infcction. and it lIIay be that the hair-trigger switch also promotes multiple infections 

(Allison d HI .. 20(3) providing the opportunity for genetic recombination within single 

bacterial cC'lls, which would cont.ribute further to the evolution of the heterogeneity 

that ha.'i bee\l documeuted in Stx phages. 

Whilt' it b known that the strength of the binding affinity between 0 n2 and 

repressor is reiativply low in 933W, the numerical values of the binding affinities between 

binding sites and regulatory proteins have not been experimentally measured for any 

Stx phage. Ohtaining these values would enable a more accurate comparison of lambda 

and Stx lysogpn stability. Knowledge of the Stx binding affinities would also help to 

establish ",})('thl'l' til(' rplatiV<' strengths of the binding affinities are the main cause of 

lower Stx lysogen stability, or whether other factors have a significant impact as well. 

Lysogells of phage lambda are immune to superinfection by other lambda 

phagl's, and a single lysogen encodes only one prophage. However, Iysogens of the 

Stx phag(' <1>24lJ are 110t illlmune to superinfection by this phage, and the C'xistence 

of Illultipk l.vsogC'ns (i.e. l.vsogens whose genomes encode more than one prophage) of 

this phage Iw .. 'i 11l'('1\ delllollstrated; it b speculated tha.t the presence of IIlultiple st:c 

gent's \lIay lead to gn~atpr toxin production and virulence (Fogg et ai, 2007). Phage 

<1>21 H ('[ICU(iPs a g(')J(' which is similar to the anti-repressor gene of the phage P22; if the 
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corrl'spon<iiug gpn<' product is indeed a functional allti-repr0ssor in <1>248 lysogens, then 

it is likl'ly to pla.v a role iu enabling superiufectioll of lysogeus (Fogg et al, 2007). Thl' 

preselJ('p of an <luI i-repressor protein lllay also reduee the stability of single and multiple 

lysogcus by iuadivat ing lllolecules of the CI repressor aud so raisiug the probability of 

em being expressed. Hmvpvcr, the lllechanism by which this protein operates is not yet 

known. The l'xt('nt to which other SIx phages are immune to superinfection, and the 

implications of slllH'rinfectioll immunity for Stx lysogen stability and toxin release, are 

imporlaut an.'HS for future researeh. 

\\'hill' there are lllany instauees amongst bacterial pathogens in which disease­

causing traits have originat.ed from bacteriophage infection (for example Vibrio choleme 

(Waldor et al., 1!)!)()) and Neisseria meningitidis (Bille et al., 2005), and see Allison 

(2007) for a review), shiga toxigenic E. coli are the only pathogens in which virulence has 

been demonstrated to be associated with the phage induction cycle. There are neverthe­

less lIlauy pathogenicity phenomena which are unexplained, and given the widespread 

distribution of lysogenic phages amongst bacterial pathogens, it seems likely that con­

comitant switching on of the phage lytic cycle and the expression of genes involved in 

promotion of disease is not restricted to the well-studied shigatoxigenic E. coli strains. 

In this chapter it has been shown how the Santillan and Mackey (2004) phage 

lambda model can be extruded to (ka! with <iiffrrent pha~c characteristics. The ap­

proach used hert' may thus provide the basis for future modelling of temperate phages, 

as mol'(' is dis(,ovcred about the characteristics of different phage strains - such as the 

ability to form stahle complexes as in phage lambda, and the magnitude of the binding 

energi('s iJl\'olvl'd ill such complexes. 
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Symbol Description 

CL Cro Regulatory proteins 
d. em The genes which code for CI and Cro respectively 

11 lei , 1I1rTu mRNA transcripts of cI and em respectively 

PR.\/ The promoter for cl 

PR The promoter for em 

On The right. operator 

OR I. Ou2. Ou 3 The hillding sites at the right operator 

OL The left operator 
0[,1. (h2. (h:3 The binding sites at the left operator 

.f[w Probability for a RNAP molecule to be bound to PRM 

without a CI2 molecule bound to On2 
['I 
. U.\t 

Probahility for a RNAP molecule to he bouud to PRIll 

with a C12 molecule bound to On2 

IR Prohability for a RNAP molecule to be bound to PR 

H = O. <I> = 0 t<.lodel equilibrium equations 

Table 4.1: SYlllbols used in the model representation of the switch. 
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Parameter Description Estimated value 
pcl CI translation initiation rate 0.09 min- l 

Pcro Cro translation initiation rate 3.2 min- l 

,M Common degradation rate of NIc! and !vIera 0.12 min- 1 

Jt Bacterial growth rate 2.0 x 10-2 min- 1 

k" rT Transcription initiation rate at PRM 0.35 min- 1 

without a CI2 molecule bound to OR2 

kq 
'cT 

Transcription initiation rate a.t Pm,[ 4.29 min- 1 

with a CI2 molecule bound to OR2 

ktTO Transcription initiation rate at PR 2.76 min-1 

Tel Time dl'lay owing to CI translation 0.24 min 

T.: ro Time delay owing to Cro translation 6.6 x 10-2 min 

Table 4.2: Description of parameters with estimated values for phage lambda (source: 
Santillan ano l\lackey, 2004). 
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Binding cncrgy Estimated value Binding energy Estimated value 

b.Cl/2 -12.5 keal / mol b.Cld2 -11.5 keal / mol 
g}i,l °t 1 

-10.5 keal / mol b.CC2 -9.7 keal / mol b.COi'2 0y2 
b.Cc , -9.5 keal / mol b.CC2 -9.7 keal / mol 

()t~ 0/;3 

b.CC2 -2.7 keal / mol b.CC2 -2.7 keal / mol 
0y 12 °t 12 

b.CC2 -2.9 keal / mol b.cg 2
23 -2.9 keal / mol o ')3 /i- b..C(!;.02 b.CC1

·
02 -12.0 keal / mol -12.0 keal / lIlol 

On l OLl 
b.CCI'()2 -10.8 keal / mol b.CCro2 -10.8 keal / mol On'2 OL2 
b.CCI'O! -13.4 keal / mol b..CCro2 -13.4 kenl / luol ()u:1 0[,3 

b.CCm
! -1.0 keal / mol b..CCro2 -1.0 kenl / mol 

OJ/I:.! OL 12 
b.CC '·02 -0.6 kcal / mol b.CCro2 -0.6 kca.l / mol 

Ou 2:i OL23 
b.GC /'02 -0.9 kcal / mol b.CCro2 -0.9 keal / mol () 12:\ o 12:3 
b.CUi~AI) -12.5 keaJ / mol pR'fIAP -11.3 kenl / mol 

I'll.. L 

b.G~~' 'AI' -11.5 keal / mol b.CRL -3.1 keal / mol 

Table -1.3: TabIt, of biuc.iillg energies with estimated values for phage lambda. (source: 
Salltillall ami l\lackey. 2004). 
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Phage ~ umher of Number of Binding Total 

sccllario !cft operat or right operator energy of number of 
binding binding CI2 to On2, molecular 

sites, VI, sites, IJn AGCh 
OR2 binding 

(kcal / Mol) states 

Lambda 3 3 -10.5 1200 

Stx 1 2 3 -10.5 400 

Stx 2 3 2 -10.5 600 

Stx 3 2 2 -10.5 200 

Stx 4 2 3 (i) -10.5 400 
(ii) -10 
(iii) -9 
(iv) -8 

Table 4.4: The lambda and Stx phage scenarios. Stx phages differ froUl lambda either 
in t h(> llUllllwl"s of billdillg sites in the left a.nd right operator regions (0 I. a.nd On), or 
in the strength of the' binding energy between CI2 molecules and the second binding 
site in On. or both. Note that Stx 1 and Stx 4(i) are actually identical, but are treated 
as separate ill ()nlt~r to make the analysis ill the text clearer. 
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Transcription 
of c1 

Transcription 
of era 

Figur 4. 1: The region of lambda DNA which comprises the molecular switch between 
lysis and lysog ny. It includes th left and right operators, which ar e regions of DNA 
which an regul ftt ' g ne transcrip tion. There are three binding sites at the right oper­
ator (OR1, OR2, and On3) and another three binding sites at the left operator (OL1 , 
OL2 , and 0£3). T he promoLers for the genes eI aJ1d era ar e labelled PRM and PR 
respeciivcly. I 'PI' ssor molecules arc shown bound a t all six operator sites . The dif\,­
gram shows how adja ent repres or molecules interact cooperatively, so as to increase 
the stabili t' of t he 1l1 olecular confi guration. In th e configuration shown , transcription 
of both eI anel era is blocked. (After Ptashne, 2004). 
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repr nLs a ll unstable equilibrium. 
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Figure 4.6: Bifu rcation d iagram for Stx 4 in (D.Gg~22' 'YcJ) space. There is no region of 
Iy.ogellic monostability, so the only possible stability structures are bista.bility or lytic 
mono Lability. . 
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Figure 4. 7: Graphs showing three numerical measures of the stabili ty of lysogenic 
equilibria: ( ) oncentra.tion of CroT; (B) Leading eigenva.lue; and ( ) PR repression. 
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Chapter 5 

Modelling lysogen stability under 
varying enyironmental conditions 

5.1 Introduction 

During induction of an Stx lysogen, toxins will be synthesized and released. Thcre­

[01'(\ the' levd of stability of Stx lvsogens affe'ct.s tIl(' rat(' at which toxins are released. 

In the' pre'violls chaptl'l', the illfil1f'IlCe of the charactPl'istics of Stx phages on the sta­

bility of tlwir lysogens was considered, and this chapter examines the effect of some 

('llvirolllll(,lltal conditions on stability. 

Environmental factors. such as the presence of ultra-violpt light (Ptashne, 2004), 

1l\a~' dirpctly infiuence the survival of the host. Other factors have ap impact on molec-

1I1ar processes t.hat. determine host growth rate, which in turn will influence the rate at 

which prophages initiate induction. 

Host growth rate is a measure of the combined effects of environmental influences 

amI is illherently determined by the response to available resources (nutrients) which 

may he temperature dependent. There remains a sparcity of published experimental 

data that describes in detail the temperature dependent growth responses of phage 

hosts to individual resources; although it is well known that growth rate exhibits an 

n....,ympt.otic response to increasing concentration of a single resource (Monod, 1949; 

Powell, 1967). 

In this chapter, the impact of nutrient level and tempera.ture on host growth rate, 

aud hellt'e lysogen stability, are considered seperately. Thus, in modelling the impact 

of environmental conditions on lysogen stability, the approach taken is to consider (a) 

variabk resourcc COllccutrat.ion (nutrient) at const.ant temperat. me, and (b) variable 

tt'Hlj)('rature at a const.a.nt resoucc level. 

The Sant.illan and Mackey (2004) model (Chapter 4) is used to explore the effects 

of telllperature and resources on lysogen stability. This model ineludes a term which 
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rcpresellts thc COllccntratioll of oIwrator sites, () H, and this depends OIl the !lumber 

of gPllOIllC equivale!lt.s present ill the cell. The average !lumber of genomc equivalents 

per (·pll, (;, is dependent on the nutrient level present ill the environment (Bremer 

aml Dellnis. 1996). Note that G is esselltially unaffected by changes in temperature 

(13n'lIwr and Dennis, 199G). and the reasons for this will be addressed later OIl. Changes 

ill telllppratlll'(' and nutripnt lcvel also atl'eet thp calculation of the probabilities of 

differellt binding configurations at the molecular switch, as described in Section 5.1.1. 

III Sectioll 5.2 we present a variation of the proof of a formula due to Powell (1956) 

which can be used to determine the age distribution of bacterial cells in batch culture. 

This forllluia was used by Cooper and Helmstetter (1968) to obtain an expression for 

the averag<' number of genome equivalents per cell (; for different host growth rates, 

and IWllce different llutrient levels; few details were provided by these authors, and so 

we provide a summary of the important steps of the derivation. 

The stabilit.y of lysogens containing multiple prophages is also considered in this 

chapt('r. It has bc('n shown that the Stx phage <I>24LJ is able to form llluitiple lysogens 

with its host (Allisou et aI, 2003); the presence of multiple Stx lysogens may increase the 

rate at which toxins are released into the environment, leading to increased virulence 

(Fogg ot al. 2007). 

5.1.1 The modelling approach 

Oue of the most widely studied strains of E. coli is strain B (Sdpleider et aI, 2002). 

TIl<' strain known as E. coli B/r is a mutant of E. coli B which is resist.ant to ultra­

violet. light (Adler and Haskins, 1960). Bremer and Dennis (1996) presented data 

on the alllount.s of' DNA, RNA and prot.ein molecules present in t.he E. coli strain 

13/1' at different nutrient levels and also at. different temperatures. These data can 

he incorporated into the Santillan and Mackey (2004) model of lysogen stability, to 

{'xallliu<' til(' {'ffed that. chaup;es ill nutrient. levels aud tl'lllIwrature can have on lysogen 

stability, as described below. The model in question is a delay differential equation 

(DDE) model. However, since it was found in Chapter 4 that the ordinary differential 

<'quntioll (ODE) version of the model (obtained by replacing the delayed variables 

with their non-delayed counterparts) produced almost identical eigenvalues to the DDE 

model at every equilibrium considered, here we restrict our attention to the ODE version 

in order to simplify the process of calculating eigenvalues. The ODE model is given 

bdow: 
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dlM,l'u] 
<it 

cllCh] 
dt 

d[Cro'd 
elt 

k;11lOH]fkM(lCl:,d, [Cr02]) + k;:dOR]fRM([C12], [C(,02]) 

- (~IM + p)[k1dl 

kC)'()[OR]fR([Ch] , [Cr02]) - h!ll + p,)[AfC1'O] 

p(T()[l\i(,I'''] - hero + It) [CroT] 

Au ('xplanat ion of the terms in the above Illodel can be found in Sectioll 4.2.1. 

(5.1.1) 

(5.1.2) 

( 5.1.3) 

(5.1.4) 

Tlw a<ijustnwuts which lUllst be made to the lUodei depelld on whether changes in 

Ilutripnt level or temperature are being modelled. The nutrient level data is presented in 

Table 0.1. The numbers 1 (lowest) to 5 (highest) are used as proxies to indicate nutrient 

1('\,('1, sillce the actnallevels are 1101, included in the published data .. The function shown 

iu Figl\l'l' 5.1 (a) is used as a hypothetical relationship between nutrient level and E. coli 

growth ratp. Note that the growth rate (11), the average number of genome equivalents 

per ('dl (6), and the amount of active RNAP in each cell all increase as the nutrient 

1<'\'('1 increa.-;es (with the temperature held constant at 37°C). 

Thus, for variations ill the nutrient level, the 11,· ,del parameters w hith are aft'cctl'd 

Hf(' thl' quantities I" and [OR] (which can be obtamed from G, since the number of 

operator rpgiolls is assumed to be equal to number of genome eq.uivalents per cell), 

a11<l also the functions fhM' flUd' and fR (see Section 4.2.1 for a description of these 

fUllctiolls). The three functions are affected because of the change in [RN APj. 

TIl(' t('mperature data is given in Table 5.2. This data was obtained for E. coli in 

a "~III('ose millilllal medium" (Bremer and Dennis, 1996); for modelling purposes it is 

n .. -,;sllllIl'd t.hat. this corresponds to the lowest nutrient level (level 1) in Table 5.1. As t.he 

t.l'lIIlwratur<' is increased from 20°C to 40 °C (with the nutrient level held constant at 

a Iloll-lillliting level), the growth rate increases. However, the replication patterns are 

i<klltical at different temperatures (Bremer and Dennis, 1996), i.e. the ratios CIT and 

f) / T l'<'Jl1ain constant as the temperature changes. Thus the avera.ge number of genome 

I'qllivnkllts per cell G (as given by (5.2.9)), and hence the value of [On], do not change 

wit II telllpf'l'atllfl'. This contrasts with the nutrient level data, where the replication 

pat tern is altered when the nutrient level increases. 

So for variations in temperat.ure, the terms affected are 11 and the functions fiu.I' 

NUl' alld fa. The three functions are affected because of the change in absolute 

tt'lllpl'rat\lre. T. The values of the parameters G, and RN AP are assumed to be fixed 

at till' \'allll'S giwl1 in Tahle 5.1 for nutrient level 1. 

Ot Il!'r mudd parameters which are not mentioned above are assumed to be constant 
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Parameter Symbol Uuits 1 2 3 4 5 
Growth rate JJ min -1 0'()07 0.0l2 0.017 0.023 0.029 

Doubling time T min 100 60 40 30 24 
C period C min 67 50 45 43 -42 
D period D min 30 27 25 24 2:3 
D~ A/cpll G genome eqlliv./cell 1.6 1.8 2_3 3.0 3.8 

:\('1 in' HNAP /cdl RNA? RNAP /cell 205 503 992 1929 3298 

Ta hl(' 5.1: P,U'HIllC'ter values for E. coli B /r at differcnt nutrient levels. There arc S 
Hilt ri{'ut l('vels. labelled 1 (lowest) to 5 (highest). The values of G are obtained using 
('<[llatioll (5.2.9) ill the lext. Source: Bremer aud Dennis (1996). 

Parameter 
Growth rate 

Tablp 5.2: Growth rates of E. coli B/r at different temperatures. Source: Bremer and 
Dennis (199(»). 

wit h respect t.o Ilutrient level and temperature. Parameters which do not feature in 

Tablps 5.1 and 5.2 are assumed to be fixed at the values given by Santillan and Mackey 

(2004). In particular, it is assumed that the rat.·,., of transcription and translation 

aI'!' \ll1atf<'('t(~d by dutn),!;cs ill lllltrknt lewl and t"lllIH'ratm<1. In reality it is likely 

that there would be an impact on these rates. and hence on the .time delays due to 

lraw;cription and translation. However. in the previous chapter it was found that the 

lo(,ation awl stability of the equilibria were not sensitive to changes ill these time delays 

(h.\' cOlllparillg the eigenvalues from the DDE aud ODE versions of the model, which 

were [o\llld to he almost identical), and so in this sellse the assumption is justified. 

5.2 Derivation of the average number of genome equiva­
lents per cell 

TIH' term "batch cultnre" is used to describe a bacterial population growing in a 

cios('d s~·stelll. There is an initial supply of nutrients which is not replenished, and so 

t he population will reach its maximum level when a Ilutrient which is needed for growth 

is exhausted. i.e. becomes growth-limiting. Powell (1956) showed that the spread of 

ages withill a population of bacteria in batch culture is determined by the frequency 

function 0. given by: 
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¢(a) = 2ve-vu 

o 
(a < A) 

(a> A) 

Wllt'H' II rt']Jfesellts age. A is the age at which ('ells divide (a tixed constant), and 

// ,--, 11l2/A. The above function can be derived (in a somewhat novel wa;v) a~ follows. 

Ll'l S (a, t) he the numher of cells aged Q at time t. and let Nr(t) bt' the total 

1l1l11lill'r of ct'lls at time t. \Ve have 

. N(O,O)da = NT(O)¢(O)da 

\Yhell the cells reach age Q (a < A), we have 

N(a. a)da = N(O,O)da = N·r(O)¢(O)da 

and 

rj>(a) = N((1.,o) = NT(0)6(0) 
NT(a) NT) 

Till' bacterial population grows exponentially, i.e. NT(t) = NT(O)evt , so we can 

wri t (' 

. ( ) _ NT(O)¢(O)da _ A.(O) -/'" (pa - -'I' e 
NT (O)ellllda, 

(5.2.1) 

Sim'p ,/;';: ¢(a)da = J~4 rj>(a)da = 1. the ahove expression implies that 

alld so 

¢(O) (1 _ e-vA ) = 1 
v 

(5.2.2) 

:\otl' that the population growth rate is equal to vNT(t), and therefore 

VNT(t) = N(A, t) 

= NT(t)¢(A) 

= NT (t)4J(O)e- vA 
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Helice 

FrulII (5.2.2) and (5.2.3), we have 

("1/.4.(1_I,-IIA) = 1 

==} e'l!\ - 1 = 1 

==} e'/"\ = 2 

(5.2.3) 

Tld:s :states !irstl~' that [I = *lu2, aud secondly that 2v = d)(O) (using (5.2.3)). Incor­

porating both of these relatiouships iuto (5.2.1) yields 

If A= 1 then the age distribution function reduces to 

</>(a) = (ln2) 21- 11 (0::;a::;1) (5.2.4) 

\"otl' that J~! 9(0) do = 1. The average number of genollle equivalents per cell can 

HOW I)!' calcula ted as 

G = J'I ¢(a)G(u) du 
o 

(5.2.5) 

\\"11('\"(' G is a function ddil1l'd such that G(a) gives t.he number of genome equivaleuts 

iu a cdl whose age is a. Cooper and Helmstetter (1968) obtained an expression for C 

h~' dividing the bacterial division cycle into n intervals, such that within each interval 

the l1ulI1her of replication points operating is constant, and hence the rate of DNA 

s,,'uth('sis is constant, Then the number of genome equivalents at age a is given by: 

G«(I ) F1ka + C(O) 

f2ka + fZlk(FI F2) + C(O) 

p"ka + Olk(Fl - F2 ) + a2k(F2 - F3 ) + C(O) 
II-I 

-- Fllka + k L a;k(Fi -- Fi+l) + C(O) 
i=! 
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\\'hf're OJ is the age of the cell at the end of the i'h iutcrval. k is the rate of DNA 

s.\'ut hf'sis I)('r replication point, and F; is the number of replication points in the il" 

iut er\'al. 

First uote that putting (L = 1 in (5.2.6), aud replacing G(l) with 2G(O), yields 

n-1 

G(O) = F~,k: + k L (J;(Fj - }~+d (5.2.6) 
i=l 

\"ow. substituting (5.2.4) and (5.2.G) into (G.2.5), we ohtain: 

G = 21n2 [I.: t Fi 1'" 2-a u rla 
;=1 a , 1 

II )--1 j.ll; 
+ kLLa;(Fi -Fi+1) Tilda 

j=2 ;=1 .11,-1 

+ ran ] 
Jo T{JG(O)da. {5.2.7} 

TIl<' iutcgrals in the first line of the above expression may be evaluated using integration 

by parts. For an integer i, where 1 ~ i ~ n, we have: 

TIl(' int('grals in the second line of (5.2.7) are pvaluated using simple integration to give: 

2- ll da = - (2-111 1 - 2-(1,) 
[

II, 1 

. 0, 1 lu2 

E"alllat iug thp integral in the third line of (5.2.7) (with a.n = 1), and using (5.2.6), we 

oht ain: 

= 

G(O} 
21n2 

Fnk + k L:7:11 ai(Fi - Fi+l) 
21n2 

Aft!'r pvaillatin~ the above' int.e'grals, we find that all of the terms from the second 

Bud third lillt'S of (0.2.7) cancel out. Most, but not an, of the terms from the first line 

also nllll"l'!. nIHI we are left with: 
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G = ~ [2F - P +·~2(I-a,)(V. - v.)] In2 . 1 n L.J £l+l £l 

1 

(5.2.8) 

For f) = 3. it is possible to rc-writc G in tcnllS of C, D and T (Cooper and Helmstet­

ter. 19(8). where T is the population doubling time, C is the time required to replicate 

t h(' chrolllusollle. and D iH the time period between termination of a roulld of replica­

tioll and the followillg cell division. Let l' bc the number of cell divisions which occur 

d ming a round of replication pillS 1. The ages 111 and 112 divide U10 division c,vclt' into 

:~ int (·r\,aI8. and represent either initiation or termination of a round of replication. If 

(J I ('(JlT('sponds to initiatiun th(:'n 11'2 corresponds to termination, and vice versa: which 

of t Iws{' is t he case dl'pends on the particular pattern of replicatioll. The age of a cell 

at the time of replication intiation is (7 - D)/7. and the age of a cell at replication 

tt'rmillation is [J:7 - (C + D)l/7. So, for example, if a1 occurs at the end of a rouud 

of !'('plicatiou then we IIlUflt have a1 = [:rr - (C + D)]/T. In this ca."lC (.1,2 must occur 

at thl' illitiation of replication. and therefore 112 = (7 - D)/T. Cooper and Helmstetter 

('ol1sic\('f('d a number of ciiff<'r('nt r<'plication patterns with n=3; they found by substi­

tilting for (/1 and (1,2 in (5.2.8), and using the appropriate values of PI, P2 and F3 , that 

the follO\ving expres::;ion was obtained in each case: 

(5.2.9) 

TIll' ahove expres::;ion was used by Bremer and Dennis (1996) to calculate the value of 

D ill rl'iation (0 lllltrienL level. 

5.3 Results and Discussion 

5.3.1 Varying the nutrient level: phage lambda 

At PClch nutrient level examined, if the value of "lei is low (i.e. within the range 

() < "r/ < 0.1) then the values of aIR/a[C lrJ and afId8[C1'lYr] are very small (at 

till' I~'sog('nic equilihrium). If we assume that they are ~ero, then the Jacobian at the 

1~'Sl)gt'llic equilibrium has the following form: 

.J ~ ( 

-1M - Jt 0 [OR](k~ w· + kS x*) [(JRJ(k~ y* + k" z*) 

) 
c.l r.I d eI 

0 -"(M -J-l 0 0 
Vrl 0 -"Icl- J-l 0 
0 Vero 0 -'YeTI) - J-l 

\\' III'I'!' 
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w* () 1~1II I 
arc h] [C f.r1= [CI'rl , ,[CI'O'r1=[Cror j' 

.r * () IJ1111 I 
() C [" [, 1] [C1rl=[Cf.rl',[CroTj=[CroTj' 

y* = DI~M I 
a[CrOT] [C1'['] = [(;1'['] , ,[C1'OT] = [CI'OT] , 

* z = iJ iRIII I 
iJ[CTo'd [C' IT]=[C IT]' ,ICroTJ=[C1'()Tj' 

Tht' (>i)!;em'aiul's of the above lllatrix are given by: 

(--')!II -- 1/') 

( ~I(TO II,) 

~(d ~(M 
-Jl----± 

2 2 

(5.3.1) 

(5.3.2) 

\'otl' that ,1/* and z* do not appear in these expressions. For leI = O. the leading 

pip;t'JI\'alue is given by Equation 5.3,3 (with the square root term added rather than 

subtracted) for all nutrient levels. At each nutrient kvel, the value of this eigenvalue 

depends oniy 011 11 and the quantity [OR](k~Iw* + k~Il:' ) (all the other parameter values 

an' fixed with respect to nutrient level). As the nutrient level increases there is not 

lIluch variation in the latter quantity. and so there is a steady increase in stability which 

i:-i mainly due to the increase in 11 .. The increase in stability is illustrated by the "'Iel = 0 

('UI'\'1:' in Figure 5.1 (b). 

For both 1<'1 = 0.05 and "'leI = 0.10, the leading eigenvalue is given by (-"'Iel'o - J.l). 

So at higher nutrient levels. and hence higher growth rates, there is a greater degree of 

stahilit.\'. Wi showll in Figure 5.1 (b) (note that tIl(' leading eigenvalue plots for ')'d = 0.05 

alld ~'(J = 0.10 overlap). 

For higher values of "'Iel (Le. "'leI > 0.1) the values of aiu/aCh and aiR/oCrerI' 
at til(' lysogenic equilibrium are not negligible. Therefore the eigenvalue expressions 

d('l"i\'cd above, no longer apply. As shown in Figure 5.1 (b), there is an initial decrease 

ill stability as the nutrient level is increased. Once the nutrient level passes increases 

heyond a certain point (i.e. llutrient level 6, in the case of "'Iel = 0.37), the stability 

hegins to increase slightly. On the basis of numerical experiments, this behaviour 

call hp pxplnined in terms of two factors. An increase in nutrient level and hence 

groWl h ratl' tends to increase lysogen stability, as in the low "'Iel cases. On the other 

halld. al-i the nutrient level increases the derivatives of the functions ikM' !JUI' and f R 
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wit Ii J'('sp('ct to C h, and CroT also change, In particIIlar, on the basis of nUll1prical 

C'x]H'rilll('nts (r('slllts not shown), there was an increase in the absolute value of &fJr 
a~ fL increased, and this telH.l:> to reduce stability; changes in tilt' values of the other 

partial dt'rivative:s were found to have a much lower impact ou stability, Whether there 

is all incr('a~e or decrease in stability when moving from one nutrient level to another is 

largely d('tl'l'mincd by which of the two factors dominates, At the higher nutrient levels, 

th(' effed of higher growth rate dominates, and so there is an increase in stability, 

III onh-r to illustrate the behaviour of the eigeuvalues more dearly, Figure 5,2 il­

l1lstrates all fom eigenvalues for phage lambda over the five llutrient levels, for dif1'er­

!'Ilt \'H1II(,S of 'd. Notice tha.t the eigenvalue( -'!TO - It) is the leading eigenvalue for 

() < !el < ().3(), 
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5.3.2 Varying the nutrient level: comparison of Stx scenarios and 
lambda 

Figure 5.1 shows that over the range 0 s: 'Yd s: O.lO, the stability of lysogells of 

lambda and Stx3 are very similar. However, for higher values of 'Yd the stability of 

S t x3 Iysogens are clearly lower than those of lambda. 

Figure 5.3 compares the stability of lysogens of la.mbda and the four Stx scenarios 

at three different nutrient levels (corresponding to the first (low), third (medium) a.nd 

fifth (high) nutrient levels considered by Bremer and Dennis (1996)), and at each level 

(he pat teI'll is the same. As 'YcI is increased frOlll zero, the st.abilit.y uf all five lysugen 

t~·pt's illerea:,es lllltil a maxirnurn level of stability is reached (corresponding to the 

(-~'<'r() -- II) eigenvalue). A small increa.se in I'e! is sufficient to reduce t.he stability of 

St xl lysogPlls (as a different eigenvalue becomes dominant), and further increases in ~(d 

1('1\(\ to rpdllced stability of lysogl'ns of Stx2, followed by those of Stx3, and finally Stx4 

and lambda (whose stabili ty curves almost overlap). Al though this pattern is observed 

[or (,C1ch uf t he three nutrient levels considered, notice that for the medium Jlutrient 

Il'vel 1~'l;og(,11 st.ahility begins (,0 decrease at lower values of leI compared to the low 

nutrient leveL so that (for example) if Ie! = 0.40 then with a low nutrient level there 

an' 110 lysogt'nic equilbria, but with a medium nutrient level there is still a lysogenic 

equilibriulll for Stx4. There is very little difference between the stability curves for the 

lIlediullI and high nutrient levels. 

5.3.3 Varying the temperature: phage lambda 

BrPlIl('f and Dennis (1996) provide data for five temperatures: 20°C, 25 °c, 30 ec, 

:3;) °C. and 40°C. The eigenvalue formulae (5.3.1)-(5.3.1) apply here (for low values of 

~'cl). hut notice that t.he value of [OR] does not change with temperat.ure (as we are 

a .. -;sllIlIillg that the macromolecular composition of the cell is independent of temper­

at un'), Also in this case the calculation of the f functions depends on temperature, 

sillc\' I ill' ('xpr('ssions for these functions involve an absolute temperature term, T. The 

Brl'lll<'r and Dt'nnis (1996) data show that as temperature increases, the E . coli growth 

ral(' II increases. Figure 5.4 (h) shows how lysogen stability changes with growth rate 

for difkrl'lIt values of 'Y!'I. 

For Ie! = II the kading eigenvalue is given by (5.3.3), while for "leI = 0.05 and 

~'d - 0.1 t he leading eigenvalue is given by (5.3.2). In all three cases, an increase in It 

[('sllil ing from an incl'eas(> in temperature causes lysogen stability to increase. 

A diff('f('llt pattern of stability is observed for higher values of leI, For example, 

with II'! = 0.35 t.he stability increases as temperature increases from 20 to 30; but as 

II iIHT('II$eS from 30 to 35, there is a fairly sharp decrease in stability. For high values 
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of ~'cl. 111('1'(' arp two opposing factors t.o cousidl'1'. As the telllpl'rat\lJ'(~ is iucrl'ased. the 

ilHTl'<lSf' ill till' growth rate teuds to inereasl' stability, while t.he changes ill the deriva­

tiv('s of tilt' fuuctions Jl~I' f1uvl' ami J H tend to reduce stability. At lower temperatures 

till' dfed of the growth rate dOll1inates, resulting in increased stabilit:v, while at higher 

U'JIlrwratlll'l's the changes in t.he derivatives dominate. Unlike the nutrient level ca .. se, 

(lll four partial derivatives contribute to the lowered stability. Figure 5.5 shows plots 

of all four eigpnvalues for different. values of "td. 

118 



0.0 18 

0.0 16 

0.0 14 

'" 0.0 12 .. 
cd 

0.0 1 ... 
.c 
~ 0.008 
0 

0 0.006 

., 
;J 

0.004 

0.002 

0 

o 
- 0.005 

~ - 0.0 1 

&l 
.~ - 0.015 

~ 
:0 - 0.02 
Z 

..l - 0.025 

1l 

-0.03 

o 
-0.005 

~ - 0.01 
:l 

'" .~ - 0.0 15 
bI) 

~ -0.02 

j -0.025 

-0.03 

15 20 

20 

20 

, .. ,., 

25 30 35 

Temperature 

Temperat.ure 

30 

0.45 

D mperaturc 

30 

/ .--

A 
40 

40 

40 

0.2 y~ 
0.0 I 

/ 
/ 

'-··f 
/ ----0.0 

/ 
_::--. / 0.15 
~-,- / 
~ .. / 
0 .05 0.1 c 

Figur 5...1: 1 1oC!clling hanges in lYSOg'l1 stability in response to change in tempera­
lur '. (n) Th r Iltionship b lwe n temperatur and E. coli growth rat reported by 
131' III .r ftnd D nllis (1996). (b) Lending igellvalu of the lysogenic quilibrium v r­
~I1S temp ralm (phag' lambdn). (c) Leading igrnvall1c of the ly 'ogenic cquilibrium 
vcr,' lI. tC'1I1pcralur (Slx3). 

119 



o 
- 0.02 

g - 0.04 
~ ::: -0.06 
" bO 
.;; -0.08 
OJ) 

~ - 0.1 
~ 

j - 0.12 

- 0.14 

0 
- 0.02 

" -0.04 :::J 

~ - 0.06 c 
:.> 
bO .<; -0.08 
g> 

- 0. 1 
" '" j -0.12 

- 0.14 

0 

- 0.02 

~ -0.04 

~ - 0.06 <i 
.!!ll 

-0.08 
~ 
~ 

-0. 1 

j - 0.12 

- 0.14 

Temperat.nre 

20 30 40 

- ----- --- -:--':'-=--- .-----

Temperature 

20 30 40 

--
---... 

-< "'- i 
.............. , .' 

""':.: ... 
, 

/ -,/_---
- - --

Temp rn, t.ure 

20 30 40 

-- - ----

--------------

A 

B 

C 

o 

~ -0. 1 

~ ::: 
'" .~ -0.2 
<.0 
s:: 

~ ~ -0.3 

-0.4 

0 

'" 
-D.I 

:::J 

~ 
::: - 0.2 
'" <.0 
'iii 

~ -D.3 
:g 
j -D.4 

-0.5 

0 

-0.1 
'" :::J 

~ -0.2 ::: 

'" <.0 
' 0:; -0.3 
<.0 
::: 

~ -D.4 
'" ...:l 

-D.5 

Tempera t ure 

20 30 40 

D 
- ----

----- ----

Temperature 
20 30 

E 
---- ---

-------

Teml era ture 
20 30 

I I 

F 

- - -

' igur - .5: Plots of Lh fom eigenval\1 . of the ly. ogellic equilibrium again t temper­
al 111'(, fnr diffC'r nt va lues of 1he CI c1f'gr::ldation rate, "}cJ (phag lambda only). (a) 
rI = 0.0. (b) Tri = 0.05. () Tel = 0.10. (d) "YcJ = 0.35. (~) "Yr[ = 0.45. (f) Tel = 0.50. 

120 



0 

'" - 0.005 
'" ~ - 0.01 ;;:; 
OJ) 

. iii 

~ -0.015 

] 

4> 

'" 

- 0.02 

- 0.025 

o 
- 0.005 

~ - 0,01 
c 
~ 

'0; - 0.015 
bO 

.:: - 0.02 

] - 0.025 

4> 

- 0,03 

o 
- 0.005 

~ -0.0 1 

! -0.015 
'iii 
co - 0.02 
c 
] -0.025 \ 

-0.03 

- 0.035 

0.2 

Stx4 

/ 
I 

I 

0.2 

Stx~ 

0.2 

Stx4 Stx 

St'3 

"tel 
0.4 0.6 

I Stx:! 

I 

/) St XJ / 

I 
/ 

/'/ 
/,/ I~H16'dR/Stxl / 

-::::- ---:;.;;..-

A 

0.4 0.6 

/}Iambda/Stx l 

B 

"'lei 
0.4 0.6 

I I 

lambda/Stxl 

c 

Figure 5.6: Plol. of lhe lcading igcllvaluc of Lhe lysogenic quilibriu11l IlgFl in. L "re f for 
phage lambda and the four lx . cenarios , at three different. Lemperature . (a) 20 DC. 
(b) 30 ° '. (,) 0 ° '. 

121 



5.3.4 Varying the temperature: comparison of Stx scenarios and lambda 

Fig1l\'(' ;).,J silows that ov(,r the range () ~ lef ~ O.lO. til(' stabilit.v of lysogens of 

tallll)(ja and Stx:3 an~ very silllilar. 110w('v('r, for higher vallles of 'd the stability of 

St x:3 l.vsugPlls are dearly lower thall those of lambda. 

Figure 5.G compare:,; the stability of lysogells of laluhda and tlw four Stx scenarios 

at tlm'(' difi'('J'('llt tplllI)('ratlJl'(,s ewoe. 30°C, and 40°C). and at each level the pattem 

is till' salJlt'. As Id is increased from zero, the stability of all fivp lysogen types increases 

until a maximum level of stability is reached (corresponding to the (-'C1'O - J1) eigen­

\'HitW). A slJlall increase in leT is sllfficient to l'<'duc:e tlw stability uf Stx,11ysogt'lls (as 

a diffl'rl'ut l'igenvaluc becomes dominant), and further increa."les in leI lead to reduced 

stahility of lysogens of Stx2, followed by those of Stx3, and finally Stx4 and lambda 

(whose stahility curves almost overlap). Although this pattern is observed for each of 

the t hrl'c llutrient levels considered, the model indicates that at 30°C, lysogen stability 

begins to decrew.;c at lower values of ~(cl compared to lysogens at 20°C. Similarly at 

-!O "(', rt'dllcC'd lysogen stability iRobserved at lower values of lel (compared to lySOg<:IlS 

al ;{(J°C). 

5.3.5 Multiple prophages 

Althuugh lysogcus are gl'ncrally imllluue to snppr:ufection by phagC's of the sallle 

st J'llill as the resideut prophage, it has been showll that single lysogens of the Stx phage 

<I>2-1/1 Illay be superinfected by a <ll24u phage; this superiufecting phage lIlay in turn 

l~'sogellize t he host cell so that a double lysogen is formed (Allison et aI, 2003). The 

ml'chanism which enables superinfection to take place is not known at present (Fogg 

('( al. 20(7). Lysogens containing multiple prophages may occur more frequently in 

t'lJ\'irolJllll'llts where there is a high ratio of phages to host cells, since single lysogens 

will ulJdergo superinfection at a faster rate under these conditions. 

Figure 5.7 shows the stability of Stx and lambda lysogens which contain multiple 

prophages. In each case, as leI increases from its initial value of 0, the leading eigenvalue 

al the lysogenic equilibrium reaches a minimum of around -0.036 and then eventually 

hl'gius to approach O. The point at which the stability begins to decrease depends on 

Ill(' lJumber of prophages. For lysogcns which contain a large number of prophages, a 

Jar);!;!' ill(Tt'IIS(' in lel (from its initial value of 0) lUust occur before the lysogen stability 

hpgius to d"creasp. This indicates that the pre:;ence of multiple prophages helps to 

stahiliz(' tIl!' lysogen. 
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5.3.6 Concluding remarks 

Sin('(' St x Iys()g{'n~ cau only release toxins 011 I,Ysis of the host cell, it is important to 

1l\l("'r~lalld Ih(~ ('ll\'irolll1H'lltal fnctnrs which infl1wnu' II\(' rates at which Stx prophages 

i Ili t ia u, I,vsis of thpi r hactt'rial hosts, ] n this C ila pt er. t Ite impart of varyill)!; (sepera tely) 

Ilut ri('llt levels and tenlperature on the stability of individual lysogt'Il n·lls has been 

('ollsid('r('c\ . 

If a change III the environmental conditions occurs which improves the condition 

of all individual host cell then there may be a fitness advantage to the prophage in 

J'('maining dormant., since induction canses the demisl' of the host cell auel tlH're may 

not b{' a. supply of other healthy cells to infect. On the other hand, as euvironmental 

('olHlitiolls improve, it is likely·that the host cell population will expand. In this case, 

t hprp may he a fitness cost to a prophage which remains dormant, since the opportunity 

to infect the Hupply of new cells is foregone. This could be investigated further by 

introducing SOIIle environmental variability into a population level model of temperate 

\lha!!;('s and host. cells (such as the one studied in Chapter 3). 

Within t.he constraints of t.he model, the results show that for a given phage type 

(lalllbda or Stx) the impact 011 lysogen stahility of a chauge in either nutrient level or 

\.('llllwrat nrc dqwuciH on the value of the CI degradation rate, "td. For low values of 

'\,1 an illcreas(' in nutrient level or tempera.ture will result in an increase in stability, 

whih' for high va!tH's of lei the opposite is true. AIL0ugh the increase in the E. coli 

growt It rate result.ing from an increase iu nutrient kvcl ur telllperature will always 

tpnd to iIlCf('aHC stahility, there are ot.her factors which ma.y counteract this effect. In 

particular. the rateH of dtange of the level of production of Md and .Mcro transcript.s 

tl'I1d to he highpr for higher values of "tel and at higher nutrient lpvels and temperatures, 

which may contrihute to reduced lysogen stability. By analysing the Jacobian matrix 

at l.\'sogl'uic equilibria, and (for low values of "tel) obtaining analytical expressions 

for t hl' eigenvalues, it. wa." possible to gain an insight into the mathematical reasons 

('pr t IH' ::;tability patterns observed. However, experimental work is needed to further 

in\'l'stigate the biological implications of these results. 

Om' assumption which is implicit in the modelling approach used is that the value 

of ~"'I is not df'IWIldent on either temperature or nutrient level. and this assumption is 

fl'asollahk {)v('r raugC's of t.emperaturcs and llutrient levels which do not threaten the 

survival of th{' host. However, at. ('xtrmue tcmperatures or vC'ry low resource levels, 

,h"fl' is Iikel.v t () 1)(' a si~llifi('allt. impact on tel, and so a diff(~r{,llt approa.ch would bl' 

11\'t" h'd ill tllt'se cast's. 

'I'll(' (litfp\'('nt values of ~/d considered in this Chapter are assumed to arise from an 

t'x\{'rtlal factor such al' ultra-violet light. It is likely that the presence of ultra-violet. 
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light would infill<'IlCl' otiwr model paranwters a .. <-; wi'll, su('h as rates of transcriptioll awl 

t J'Hllslat iOll, Fnrt.llCr l'X]H'rilllC!lltal is lH'e<il'd to d('(ennilH' the ('xt<'llt of sl1ch infhl('IH'C'S, 

III this Chaptpf. it has also heell showII that lysoglms containing llIultiple proplwges 

<11'<' lllUrl' stable thall single prophage Iysogells, If multipl!' pruphage lysogells comprise 

a largl' proportioll of t he tot al lysogl'n populatioll, this may illdicalt' that t here is a 

shortage of susceptible host cells. awl so there is Iik('ly be a htu('ss advantag<, a..-;sociatpd 

\\'it h lowl'[ rates of indlletiou, Lmwr induction rate's imply lower levels of toxin release 

by lllultipl!' SLx lysogl'lIS, but thh,; di'l'd lllay be balanl'cd out to some extellt if multiple 

St x lysogells are capable of synthesizillg a higher llumlwr of toxin molecules during 

ill<luctioll thall single lysogens (Fogg et ai, 2007) 

To summarize, there is a (1<,arth of experimental evidence regarding the influence of 

cll\'irOllllH'lltal conditions on lysogen stability, However, by making lise of the available 

<lat a cOllCl'rning the E, coil: growth rate and chemical composition at different. nutrient 

[('\'('Is alld \.('mperat 1U'es, this ChaptPl' represents a first step ill a.'>sessing the impact of 

tI\(' f'llvirOlllllcut on the stability of Stx lysogens, and hence on levels of toxin release 

<Iud viruleIlce, Future work could involve investigating the effects of temperature and 

!lilt ricnt ll'vd on the levels of toxin release by populations of Stx lysogens, Another 

qlwstion to be considered is whether lysogens of different Stx phages respond differently 

10 dwnp;('s in the t'llviroTlmcnt, 
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Chapter 6 

Stochastic modelling of the intial 
decision between lysis and 
lysogeny in Stx phages 

6.1 Introduction 

As discussed ill Chapt('r 4, all infection of an E. coli cell by aile or 1II0rt.' Stx phages 

will onl.\' Ipad to tl1(' relea.se of Shiga toxins on lysis of the host cdl. In th(' previolls 

Chaptpr. thp slabilily of SIx Iysogens wal-; considered via II deterministic mathematical 

1J1Odd. IIPre. I he init.ial lkdsioll bet.we(,l1 lysis and Iysogen.v ill SIx iufecl ions. and 

thl' illlpJi('atiolls for the ratp of toxin l'l'lease. will be considered within a st()('lla,o.;lic 

frlllll('\\'ork. 

l)ming a phage infection. the times at which events such as gene expressioll and 

I rallslat ion oc('ur depend partly on randoUl factors such al-; the ('nat ic mot ion of molecules 

wit hill till' cpll. U nlik(' til(' det('l'Iuinistil' modelling approach. the stoduu.;t ic fram(,work 

('uahlC's t he random nature of the lysis-lysogeny decision to he lllodelled. Furthermore 

it pwvitips n more lIatural setting for modelling small arnoullts of substances. since 

I hl' qnantit ies of interest are discrete nUlnbers of lllolecules rather than cOlltillUOUS 

('on('t'ut ra tions. 

Arkin ct al (EJ98) presented a stochastic model bu!;ed on the known regulat ory 

nH'('hanisl1ls (described below) which control the lysis-lysogeny switch in phage lambda 

(Hcrskowit t: and Hagcll, ID80; Piashlll'. 19D2). This is a highly complex model, involv­

ing fiw g('Il!~S alld tlwir rl'sppctivc prott'ill products, and therefore rUlluiug the lllodel 

requir('~ II huge alllount of cOlllPuting resources. In this Chapt.er a similar Illo(kl is 

d('\'dojl('d. ill which cl'rtain simplifying assumptions arc used ill order to reduce the 

l'OlllPut atiollal workload. This model is t hen adapted to ('liable Stx phage charactPris­

t i('s I () he lll()dplh·d. 

A sill!!,l(' rull of till' lll()(it'l corrt'sIHJlllis to one cOlIlpletn cdl c.vck. awl Ill<' results 
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are the llumlH'rs of each type of molecular elltity owr this lime period. The outcome of 

each rtm is either lysis or lysogeny, and so the probability of lysogeny for a part.icular 

phage cau be estimated by carrying out a. large number of runs and calculating the 

proportiou of lysogenic outcomes. 

It would have been desirable lo carry out lllany lllore runs of the mode!. and to 

investigate more Stx scena.rios, than are presented here. However, limitations imposed 

by computer resources and time have meant that the results in this Chapter represent 

a preliminary investigation rather than a full allalysis. 

6.2 The lambda lysis-lysogeny switch 

llne a descript ion is provi(kd of the hiological processes which feat med iu lhe Arkiu 

ct al (Em8) mock!. aud a summary of t.lw results which were ohtaiued. 

The Illodel includes the protei us CI, Cro. N, CII, ClII, and their respective gell(,S 

cJ, em, n. ell, and clII. I\.'Ionolllcrs of CI ami Cro can dimeriz(' to form CI2 aud Cro2 

molecules. Figure G.1 illustrates the various operator sites, promot.ers and terminators 

awl t he sequence of positions of these regulatory regions on the lamhda gelloUH'. At 

the st.art of an infection there are 110 protein moleculrs present, hilt sllbsrquently gene' 

cxpression and the resultiug mHNA t.ranscripts translated into protein molccules. The 

simulation proceeds until the end of the cell cycle (35 minutes) i" reached; at this time, 

it is the number of CI2 and Cro2 molecules which indicates whether lysis or lysogeny 

haH takcn place. If t.here arc more CI2 molecules than Cro2 molecules, then the olltcornc 

of t he infect ion is lysogeny, otherwise the outcome is lysis. 

NUTL OR NUTR 

~ elII T n I 1 , el I , 
1 , I ero I 1 , , ell ~ 

TLI PL PRM PR TRI PRE 
OL OE 

Figurr 6.1: The region of lambda DNA which comprises the molecular switch between 
lysis and lysogeny. After Ptashlle (1986). 

Immediately after phage infection of a host ba.cterial cell, host RNAP molecules 

biud and begin transcription at P Land P R. The resulting lllRNA transcripts are 

terrniuated when the RNAP lllolpcule reaches the eud of the genes n (ill the case of 
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Idtward trHllscriptioll) aIHI CTO (in the case of rightward transcripti()n). Thl,transcripts 

are t rHnslated hy host ribosome'S into lllole('ules of the reglllnt.ury prot eillS ~ awl Cru. 

The proteill n aets as all allt.i-tennillator. I II the ahsl'lIc(' of t hI' prot Pill n. t rall­

scription is teJ'luillated ollce the R:'IJ'AP lllolecull' I'IIcot1l1ters the terminators T I.l and 

Till at the end of the nand cm genes n'sr)(~et.ively. How('\'('r. as t h(' COIH'('lIt rat ion ()f 

n incrpases. lllokcllks of n may act to anti-t.erminate RNAP at the :\CTL and :\L'Tj{ 

sites. \Vhen this happens. the RNAP mol('cule is able to cOlltinll(, 1l10Villg along the 

D:\ A lllolP<:ule ht·yolld the termillators lULl! thus to tn1llscrii>e t lIP additioual geues d 1 

alltl ell 1. 

Th(' ell protein is vulllerable to attack by a Imctt'rial protea,<';I' kllO\\'ll a.'i HftD 

(Chl'lIg e( al. I9HH). and it is proposed thilt a secolld protea.'il' also acts to dl'gra<il' ('II 

(Kihara ('\ al. H)97): in Arkin et al (199H) these two proteas('s an' lahelled PI and P2, 

The fUllctioll of the protein elli is to billel to molecules of PI and P2 so a.'i to protect 

('11 from d(·gradation. 

TIl(' (1 gl'IlC ha.<; two prollloters, P HAl flud P H8· The P Nt.! prolllotPr ita.'i tlm'(' 

hilldillg sites: O/{ 1. 0 u2, ami 0 1?3, whilt' P Ht: has a sillgh· billdillg sitt', Or;. In tite 

early stages of t he infection It ero2 dimer hinds to 0 Il~l, and t his is suffici('nt to prevent 

transcription of cl from PRM . Transcription of cl from Pur; can only procced wilen a 

molecule of ell binds to 0 E, 

Th(' level or activity of the protein ell Ia.rgely determines whet.her or not lysogeny 

O(,(,IIl'S. If there is a sufficient levd of CIl, then a CII molecule lIlay activate the cl 

prolllotl'r PRE. A CI2 dimer can then biud to the operators (h aud OR, and thereby 

promote the expression of cI from P RM while turning off the promoters of all other 

gem's, Thus. if ell is highly active the cm gene will be repressed and the phage will 

form a b'sogen with it.s host. Ou t.he other hand, if productiou of Cll is low then PRE 

wiUuot bl' activated; th11s, then' will not. 1)(' suffkil'ut production of CI to repress em. 

Hnd so product ion of Cro will h(' unchecked aud t.he host cell will he lysed. 

III Arkin et at (1 D98) a cell was considered to become commit tt'd to I~'sogeny if 

[C Jz] > [CT'o:,d at the emi of the 35-1I1illute cell cycle, and thus t.he probability of lysogeny 

wa.'i ('st imated by running a stoeha .. 'itic simulation of the ahove l1l()(kl (using the Gille­

spi(' algori t hill. described below) mallY t.imes, a.nd calculating t.he proportion of runs 

which satbfied this condition. Arkin e/, al (1998) calculat.ed the probability of lysogeny 

for phag~ lambda at dim'n'nt lllllitipliciti('s of infection (~IOI) and found that as t\lOI 

illereasps, the prohabilit.y of Iy~ogeny also ilH.Tt'Clses, this being ill agreement with pre­

vious t'xpl'rilllt'ntal work by Kourilsky (1973), With their chosen parameter set (which 

WH." dpriwd from pUhlisht'd values in the literature), it was found that with ~lOI=l 

the probability of lysogeny was approximately ~ero, while the probability of lysogeny 

appr.mdH's 1 as ~IOI is incn'as('d above 10. 
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6.3 The stochastic modelling framework 

In onkr to model the proC('SSl'S descrih(~d above, a large 1IIl1nbl'r of cliemical rc­

actions of different types must be ('onsidf'J'(~d. In a chcmical n'(1ction. the nlOkcuks 

react together to product' the product lllolecules. The numher of reactant lIlolenilt,s 

dett'nuilH's the m·de". of the reaction, e.g. 1st order (a singlt' rt'actmlt). 2nd order (two 

reactants) etc. For example, a second order react.ion with a single product lIla.\· he 

writ ten a .. s: 

Thl' frequency wit h which this readion occurs derwnds 011 tlit' con('('lltrat ions of R 1 

and R",! and (1 parallll'tl'r known as the rate constant, k. Thlls. in a dili"f'J"('nt ial ('quat ion 

Illudel, th!' ratf' at which the concentration of 8 increases is givcn hy 

\V here t he notation [Xl means the COllcPlltrat.ion of su bstance X. 
Howevl'r, a cont.inuous (kt.l'rministic model clpscTibed by d!l1erential equations is 

not appropriate for every situation. For example, small numbers of reactant molecules 

and infrequent reaction eveuts can generally be handled better by a dbcrete storhastie 

mu<h-!. In this t.ype of lllodel t.he quantities of interest are t.he numbers of molecules 

of the substances (rather than their concentrations). and the times at which reaction 

events OCCI\l' are randomly generated from a chosen probability distribution. 

Tht' Gillespie algorithm (Gillespie 1976, H)77) is a stochastic siulIllation which p1'o­

ct'eds by det erllliuiug the time at which the next react ion eVl'nt occurs. and the ident it~, 

of this reaction (from a list of It possible react.iolls). The state of the system (i.e. the 

Illlmbt'1' of molecules of t'Heh substance) is titt'n updated according to which reaction 

ha~ occurrpd. This process is reppated until the simulated system tiuH' f reaches a 

cprtain value flllll,T' 

At each iterat ion of the algorithm, it is necessary to calculate t.he reaction propensity 

of e(Jch reaction. For l'xarnple. the propensity of the reaction 

is given hy (Tl ('2, where '/'1 and 7'2 m'e the numbers of molecules of HI and f{2 respec­

tively. and c is til(' stocha:-;tic rate constaut for this reaction. 
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Suppose that. the latest reaction event occnrrcd at. tilllf' t. Th!' kll~th uf tilllt, l' ulltil 

tl)(,llt'xt reaction event is calculated as an expoll('lltial randol1l variahle wit h paral1lC't('r 

1/ L:~l hi. so that 

rt 

P(T S t) = 1 -~ exp( --I. L hI) 12'0 
i=1 

whl'f(' hi is the propellsity of the ith reaction. 

Tht' i<il'ulit,v uf the rl'Clctioll which occnrs at time t + l' is detenllilll'd h.v dividiug 

tile illterval [0.1] into n sub-interval, where the widths of the suh-illt('rvals are gi\'l'll by 

h,; L;'=1 h, (i = 1..0). A unifurlll raudom number U b then generated ill [0.1]. aud if 

{l falls ill the i l
" sub-illterval, thell reC\{.~tion i is selected. 

There arc situatiuns where the Lime to the llext reactioll ('vent is not expOIwntially 

dist rilJlltpd. Fur exctlllph., if the reactions are ta.king place withill a growing cPlI t hell 

tlw illcrcasing volunH' affect s the freq\H'ncy wit.h which lllol('cuks collide and ht'IlCl' 

H'a(·t with I'l1ch other. Also, if a particular event consists of a series of pxpollel1tially 

distributed time st.eps. then this may be modelled by a single rHlIdOlIl ulUuber frolll a 

gamma distributiou; an example of such an t'vent is transcription of a gene. ill which 

the R:\AP enzyme moves from one end of the gene to the other ill a series of steps from 

ouc llucleotide to the upxt. The Gibsoll-Bruck algorithm (GihsUIl ami Bruck. 2000) is 

equivalcllt to the Gillespie algorithm, but it is formulated in such a way that it is easier 

to incorpora te nOll-exponentially distributed reaction times. 

Followillg Gibson and Bruck (2000), the siulUlatiOlI algorithm Ilsed to generate the 

results iu this Chapter divides the set of all possible readiollS into 3 classes: (i) gamma 

; (ii) ('xponelltial; aut! (iii) second oroer. These are described below. 

6.3.1 The gamma class of reactions 

l\I()\'PllH'nt of lUI HNAP pnz)'nH' along a DNA molecule and movement of a ribo­

some ;liollg an IIlR:\A transcript are both modelled using a gamma distribution. This 

is possible because both these types of events cOllsiHt of a HPries of steps. For l'XaIll­

pie. SIJPPOHC all HNAP euzYllIe bindH to the promoter of a gelle whose length is /II 

nucl('o\ ides. TrallsCTiptioll of thb gpne involves movement of the enzyme from the pro­

moter (call this position II on the DNA) to the terminator (position M 011 the D~A). 

which ('all \)(' represented as: 

RNAP.D;\lAo ~ RNAP.DNA,\I 

This t'\'t'llt call be divided illto AI steps of the following form: 
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RNAP.DNAlI ---, Rl\AP.IX\AII+1 

where 0 < /I. < AI 1. Thl:' time at whieh tIll' IIl'xt siu)!,le-Jluc\l'otic\e stp!> O(,(,IlfS (,<IU 

be lllodclled as all exponelltial ntlldolll variable, and so tllP ()vpndl tillH' it takps for tll!' 

enzylllP to tram;eribe the gene is the SUIll of ,'I exponent ial raudOIll Iltllllbers. C sillg 

t he result from probability theory that a SUIll of inc\l'p('IHl\'nt idcllt ieall.\· dist ributcd 

('xpollclltial randolll variables has a galllma distribution (LC'on-Gar('ia. EN!). it is onl.\-

1Il'('('SSIU'Y to generate a single galllma ra.ndom varia ble t () silllulall' t ranscri pt ion of the 

gene. ratiIPr than Al exponential random variables. Givell that gl'nes lIIay he seVl'ral 

hUlldred nucleot ides long. this approach great ly increases the Slwcd of the silllulation 

process. SOllie accuracy is lost however, since it Illust now bt~ illlplil'itl~' H!;SIIllI('d that 

til<' lIl()V('llwnt of an enzyl1le moil'cule (or ribosome) prm'('('ds unhindered at all tilllcs. 

\\' herem; in rea Ii t.v t hel'(' may he occasions w hell an cnzYIlH' ha.-; to \\,Hi t for allot hpr 

l'lIzynH' lIlolecule ahead of it to lllove out of tIlt' way. 

6.3.2 The exponential class of reactions 

Of the remaining reactions, those which are of 1st onltor 1Il1l,\' lw modelled as having 

expollential firing times (second order reactions, which are inf:j(~II('ed by changes in 

volume result ing fwm cellular growth, mllst. he handled seJleratdy). These 1st order 

reactions include degradation and dissociat.ion. Degradation is the process by ,":hich a 

protein slIch as C I is lost t.o the system: 

CI-. ¢ 

and dissociation is w here a protein dimer separat.es to form two l1lonom('rs. e.g.: 

Cro'2 --> Cro + Cru 

6.3.3 The second order class of reactions 

Second order reactions involve two molecules colliding together and read.ing to form 

IIl'W molecules. Since tIl<' react ions are taking place in a growing celL the inCTpasillg 

voilmw affects the rate at which molecules collide. Allowing for in<Teasing volume 

1IJ('aIIS t Iwt t he distribution of firing times for second order reactions is not expon('utial. 

At tillle f, til(' variable 

(6.3.1) 
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Phage 13ill< ling 
scenario Plwrgy of 

CI:.! to Ou2. 
tlCCJ2 

IOU:.! 

(kcal / Mol) 
Lambda -10.1 
Stx 1 -8 
Stx 2 -7 

Table 6.1: The lambda ami Stx phage !:iccnario!:i. 

lia!:i the correct distribution for a second order reaction (Gibsoll and Bruck. 20(0). 

wlww: V(t) is the cell volulllc at time t; U is a Uniform [0.1] random \'(triable: (' is til(' 

('ellular growth rate; and (Ii is tirP propl'Ilsity for rpaction i. 

An l'XaJllpk of this type of reactioll is dilllt'rizatioll. whpw two proteill 1lI00101111'rs 

joill toget her to form a climer. e.g.: 

Cro + ero ---, C1'O:2 

6.4 The model 

A l\latlab (The l\lath Works, Inc.) algorithlll was written to model the Iysis-Iysogpny 

decision in phage lambda aud in two Stx scenarios. As discussed ill previous Chapters. 

the value of the binding energy tlGg~122 in the Stx phage 933W is lower than in phage 

lambda (Koudelka ot ai, 2004). Thus Stx scenarios were constructed by varying the 

value of this constant, as f'ihown in Table 6.1. Following Arkin ct al (1998). the multi­

plicity of infectiou (i.e. the Ilumber of infecting phages per host cell) was set equal to 

6. 

An uutlinl' of the algorithm Ilsed is given below, and an illustration is provided in 

Figure 6.2. 

(I) l11i t ia lize the systelli. 

(a) Let T hp tlip syst(~m time; set T=O. 

(b) Let Vo he the initial volume of the cell; set Vo = 1. 

(c) Let X he the system state. This is a vector which stores the current number of 

moll'cult's fur each chemical species in the model. Set X equal to its initial value. Xu· 

(d) The gamma cla..<;s: 

132 



Set time t=O. celi volume V(t)=l. and state X=XD. 

Let L be a zero matrix with g columns (where g Is the number of 

reactions in the gamma class) and In Itlally I row. 

Let CO. CI. and C2 be the three reaction classes (gamma. 

expone ntlal and second order. respectively). 

Generate putative reaction times for every feasible rea ctlon (give n 

the c urre nt state X). an d set tequal to the lowest of these values. 

Let j be the the Identity df the reaction occurring at time t. 

~ 
Update the state X to reflect the fact that reaction j has occurre d. 

j e: CO j e: Cl j € C2 

Update ali firing Update ali firing times in Cl and C2. Update ali firing 

times In Cl and C2. times In Cl and 
Generate a new putative firing time for 

C2. 
Remove the firing reaction j. 

tl me correspond Ing Generate a new 

to reactlonj from 
If necessary. generate a new gamma 

putative firing 

the matrix L. 
firing time and insert into the 

time for reaction j. 
appropriate column of l. 

l I 

Find the lowest putative firing time of ali three 

reaction classes, and set tequal to this value. 

let j be the Identity of the reaction occurring at 

time t. Update V=V(t). 

~ 
If t>TMAX then stop. 

Otherwise continue. 

Figure 6.2: The model algorithm. (The notation j E CO, for example. means that 
n'a("\ ion .i is a member of t he gamma class, CO). 
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Thl'fl' arc 20 reactions in the galllllla C\afiS. 15 of which correspund tu till' lllO\"(,lllellt 

of H:\'AP along a Dl"A molecule; till' relllaining 5 H'Clctions COlTPSPOlIlI to lllon'lllent 

of a rihosonw along all lllRNA transcript. i.e. translation. 

Let L be a lllatrix with 20 colulllns and (initially) 1 ruw. This lllHtrix will contain 

t 11(' firill).!, tillles of tlH' l'I'actiolls in t.his class. Siu('(' t II<' first rt'Hction \\' hich occurs can­

not be' in the gamma class, scI, every entr.\' of L eqllal to 00. Let to=oc he the putative 

til1H' at which the next gamma reaction fin's. 

(e) The exponential cla.'is: 

There are 52 reactions ill the expollelltial class. Rl'actiolls in which an H:\AP 

lllolt'clllt's hind to promoters on a DNA molecule, and reactions in which ri bosumes 

hind to mIl:\' A transcripts, are included in this class. 

For each exponential reaction i (1 ~ i 'S 52), obtain a plltative firin~ timl' h.\· gl'n­

eratillg a fCmdolll IlII111ber from the exponential distribllt ion wil h parallipt PI' 1/ (k , X,), 

where k; is the stochafitic rat.e constant. a.nd N; is the initial III II lib cr of lllolpclIlps of the 

reactallt. If 1:1 reaction is not possible at this stag(> (i.e. if then' an' no 1l101pclIles uf thp 

l'!'actant prespnt), 8!'t the putative firing time of this reaction equal tox. Set t1 eqllal 

to t he lowest firing tim!'. 

:\ot(' that the first react.ion to oecm will be <til nNAP mol('\nk binding to it pro­

motel', since no other evC'nts can occur until this has happcllf'd; therefore all other 

rPHctioll t.ypes ill t.his cla.ss have firing t.imes of 00 a.t. this stage. 

(f) The second order cla.<;s: 

There are 8 reactions in the second order class, which include protein dimerization 

(resulting in the format.ion of Ch awl CW2 molecules) and a .. <;sociatioll of proteins 

(('it her ell or ClII) with prot eases (either PI or P2). 

For each second order reaction, a putative firing t.ime is gmwrated using (6.3.1). 

Let t2 be the putative time at which t.he next secoud-order I'l'actioll fires. Since the 

first n'lH:tioll to oC('lIr canllot lit' a second order reactioll, set t2=oc. 

(2) Tillie iterative loop. 

(a) Identify which I't'Hction will occur next., by det.ermining which of to, t1. awl t2 

hal-; the low('st \'aIm'. Label this react.ioll j. 

(b) If rl>actioll j is from the gamllHt dass, Het T=tO; else if the llext reactioll is from 

the ('xpollclltial claHs, set T=t 1; else if the next reaction is from the second-order class, 

spt T=t2. 

(c) U pela te the syst.em st ate X according to reaction j. 

(d) Calcula(.e the Ilew volnrne of the cell at time T, VT. Note that the cell volume 
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increases with time such that at till' end of the ('('II ('yell' the VOIUlll(' has dlllllJktl (i.e. 

the' cell volume increases [rolll 1 to 2 over the coms(' of the (,('11 c~'('le), 

(» If react.ioll j was from the galllma dass, H'lllove its Ilrillg time from the lIIat rix 

1. 

(I') G('llI~ratp w'w put.ative firiu)!; tillles for (',wlt rl'act iou ill the expOlH'ntial and 

second order da.<;ses, Let t 1 and t2 be the 100vest firing times for exponent ial and 

second order da .. 'lses respectively, 

(f) If react iOll .i haH resulted ill au RN AP molecule binding to a prolllott'r or a 

ribosome bindiug to an mR:\, A translTipt (both of which belong to tlie exponent ial 

class), then the next nlDverneut of this molecule will 1)(' a rpactioll belongillg to the 

galllllla cla.'is: tliNcfure it is n('cessar~' to obtain the firillg t illW o[ t he corresponding 

gamma reaction as a. random number from the appropriate gamma distriIJllt ion. Then 

illsert this firing time into thc appropriate colulllll of tIll' matrix 1. 

(g) Set to equal to tilt' lowest valuc iu the lllatrix L. 

(h) If the ('ud of the cell cyc\(' ha...;; not ])CP11 f('(1chpd (i.('. if T < 35 minutes) go to 

step 2( a): otht'rwise stop. 

Thus at each iteration of the algorithm, the algorithm moves forward in time to 

til(' next reaction eveut and updates the numbers of molecules df pach substance (e.g. 

proteins, mil;\! A transcripts etc) accordingly. \Vhether the outcome of the run is lysis 

or Iysogcny can he det.ermined hy comparing the final nllmhers of lllolecules of <::12 and 

Cro2 at the end of the 35 minute cell cycle; if there are more molecules of C12 than 

Cr02 then a lysogen ha..'l been formed, otherwise the cell has been lysed. By running 

the algorithm many times for phage lambda and the Stx scenarios, t he proportion of 

runs which result ill lysogeny call he obtained for each phage type, 

To obtain the resliits ill this Chapter, Condor (The Coudor Software Program) was 

used to dist.rihutl' the algorithm to a large llumber of computers around t.he Livcrpool 

University campus, so that multiple simulations could be carried out in parallel. 

6.5 Results and Discussion 

The algorithm dcscrii>f'd in the previous SCctiOll was rUB mallY tiIIll'S for phage 

lamhda awl two St x sccnarios presl'nted in Table 6.1. For pach phage scenario 100 nllls 

were initiated (via the Condor system), but. not all of the runs were completed within 

t.ht, available time: the llUlIlbers of completed rUlls are given ill Table 6.2. Thus, there 

is a possibility of bias ill the results - it may be that rUllS which result in lysogeny 

gencrally tak(' longer to cOlllplet.e than lytic runs, for exampl('. However, this concPl'll 

is less(>lll'd to sOllle {'xt.ent by the approximate agreement between th(' phage lamhda 
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lysogf'llic proport ion obtnill!'d here awl t h<l I of Arkill ('\ al (1 DfJ8). 

Fip;llf!' ().:~ shows tht' final IlIlmlwrs of l1Iokcll]pS of (,T2 and ern:! for pnch cOlllpkled 

rUll of the algorithlll, aud for each of the three phage types. The plots also show 

the straight lille alollg which #(CI2 )=#(Cro'2): poillts above this liue corrcspulld to 

lylic oulconH's, ami points below corr('spond to lysogeny. The llI11llhers of lylic and 

l:vsogcnic outconm; arc giveIl in Table G.2. For phage lambda I he proportioIl of lysogenic 

oUtCOIllCS is (lAG. which is in line with the results ohlaim'd \Jy Arkill ('t al (1991'\) (for a 

lIIultiplicity of iufectiou of (3). For the two Stx scenarios this proportiou is much 100\'I'r 

(O.OG ami 0.07). indicating that the reduced biuding ellergies (as given iu Table 6.1) 

haw a significant impact 011 the probability of lysogl'lI,v. For hoth Stx scenarios. the 

tillal nUlllher of Cl2 lllokclIlf's varies between approximately 30 and 2(j0. while tll(' 

nlllll\)('r of Cr02 mokc:ulPs vari('s behV('en IGO and 400 (with two Ollt liers in I hl' cast' of 

Slx1). 

III Chapter -1 it was ShOWll that til!' weakl'r binding plwrg,v hl't W!'Pll t lIP op<'l'at or 

sill' OH2 and t.he reprt'ssor C12 in the Stx phage 933W (compared to phage lalJlhda) 

contributE's to the low('r stability of its lysogens. The results of this (,haptpr (,()llfinll 

that this weaker binding energy also leads to It lower prohability of lysogeny. and h<'l1c(' 

furtlwr increa.'lcs the ratp of toxin relem.;e. 

Olle question which arises is whether the probability of Iyso"-I'ny and the induction 

rate always evolve in tandem. Recall that in Chapter 3 a trade-off function was assumf'd 

to exist hCt.Wl'Cll these two parameters, such that a chang!' in olle of t he pan~mct ers 

wa:; always accompanied by a cha.nge in the other one. The results frolll Chapter 4 alld 

Chapter (j also indicate that changes in binding energies have an impact on both param­

('ters. Since both parameters arc det.ermined by the same switching mechanism. any 

challgc which afh·ct s this IlH'chanism is likely to affect both parameters simulatenously. 

Thf'l'p may 1)(' circulllstancf's in which a phagp population bendits from a change in only 

OIl(' of tlw paranwtprs while kpeping tIll' other fixed, but wlwtlwr this can be achieved 

ill practice is not clear. 

III Arkin et ttl (19D8). the ant.hors were a hIe to carry out t.hOUS811ds of nms wit h the 

help of a supercomputer. wlwrcHs much sma.ller numbers of runs have heen completed 

hert'. Whik it seellls ('kar that the change in binding enprgy haJ'l au impact on the 

prohability of lySO~('Il.v. tht' relatively slllall nurnber of nms t.hat havp beeu complC'ted 

IIImn thaI wt' (,(UllIot be ccrtain as t.o t.he magnitllde of this impact: part of tllf' diffl~}'('lH'f' 

I)('tween tht> fPsltlts for the three phage scenarios is attributahle to random variatioll. 

As ill Chapter -1. it has hecu necessary to use phage lalllbda parameter values for 

lIIodl'lling St x phages. owing to the lack of experimentally determined val up:.; for Stx 

phages. It may be possible in the future to obtain the aetnal Stx values. and so to 

determinl' otlwr parameters which may have a significant impact on the probability of 
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lysogell,\'. 

Luwer probabilities of lysogen,\' and lowcr lysogen st abilit.\' an' hot h ass()cia t l'd wil h 

higher rates of toxin release into the ellvirommmt. sillep toxills Hn' uIIly releHsl'd wl\(,11 

the host cell is lysed. \Vhile it is knowII that certaill Stx l~!sogells haw highl'r rates 

of indllction than phage lambda (Livny Hnd Friedman. 20{).J), Il!('rc is (,lllT(,lltl~' no 

pllblislwd data relating to probabilities of lysogeny [or Stx phag('s. This is auul her 

iJllportant arPH for future expl'ril1H'utal research. 

Following Arkill et al (U)98). a multiplicity o[ iufection (t\IOI) of G has heeu a,,,,sulIlPd 

in this Chapter. The MOl i:; kuown to haw a rmtjor effect on the prohability of lysogell,\' 

in phage lal11hda (Kourilsky, 1973); for low MOl (i.e. 1 or 2). the probahilit~' of lyso~J/'II,\' 

is dose to zero. and this is likely to be thc Ca..'it' for Stx phages a.s wcll. Thus. for low 

t\10I. allY reduction in the probabilit.y of lysogcIl.Y resulting froJII till' I()\H'I' hiuding 

energy of n:3:HY is likely to be negligible. 

The approach IIscd ill this Chapter could t.heoretically he lls(~d 10 IIH)(ipl I Ill' iJll­

pact of ('II vironlllcllt.al ('oudil ions on the prohahili t,Y of lysogell~" Gi yell t hc vcry large 

lIulIlber of paraJJleters which appear in the lllodeL a thorough Hnaiysis of the pfft,('t 

of (PlllperatllJ'(', sa.v, would reqllire It huge amount of experimental work to deterJJline 

parameter \'alucs at differpnt temperatures. How(~ver, changes in certain selected pro­

cesses could he investigated - for example. if rates of transcr:ption and translation 

were known to iucrea~p ill respouse to illcreal'led temperatl\l'e, theu thcse rates could he 

adjllsted accordingly in the model and t.he new probability of lysogeny dcter1l1i~led. 

It would be instructive to extend the model to include transcription and translatiou 

of I he Shiga toxin gene. However, t.he biological knowledge of the mechanisms governing 

expression of t he toxin gene in Stx phages such aoS 933W is not yet sufficipnt for this, 

and furthermore the greater complexity of such a model would require much greater 

jpwl of cOln}>lltiug reSOllrces. 

In au exact st.ochastic siJl1ulation algorithlll, such as the Gillespie algorithm (Gille­

spie, 19i7). ever.v reaction event is modelled seperately. Al:;o, the algorithm lIlUSt be 

1'1JII 11 large numher of tillles ill order to obtain statistically significallt results. Therefore. 

sto('has( ic modelling of complex cellular processes demands high levels of computatiollal 

po\\,pr, alld Ihis plan's s('v('!'(~ restrictions on t.he amount of work that can he carried 

0111 ill (his arpa. 

All allpmal iv~' (0 l'X(lct algorit.hms is the use of approximat.e algorithms, which do 

1I0t 11I()(il'l PVl'r.v reaction eWllt illdividually. These illclude hybrid algorithms ill which 

SOIl1(' react ions are lllod('lled stochastically while otlwrs are mmh>lll>d det erministicall.v 

(P.g. Puchalka and Kierzek, 2004), aud lea.ping algorithms in which ea.ch time step 

Illa.\· incluci(' mort' t han one reacl ion ('Vellt (e.g. Gillespie, 20(H). In t.his Chapl er, the 

usc of I hc' galllma distrihut.ion to model transcript.iou nut! t.rauslatiou enabled simula-
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Phagc TuLal ulllubcr N IIllIber of ~ limber of Prop 01'1 iou of 
S('('wlrio of nllls Iylic nUlS I,vs()~('ui(' nllls I~'s()g('uic nlll~ 

Lamhda 69 38 :31 ll,.:l,) 

Stx 1 41 :~!) :2 (), OJ 
SIx 2 G7 s:! 4 O.O? 

Table 6,2: Table of [('suIts for phage Imllbdn nud the Iwo SIx S('('lIarios, 

tiou times 10 be rcdm'p(i. but a sillgle 1'IIU of t.he algorit hill still rcquirC'd se\'eral days 

to l'l'Hch cOlllpletion, Any attempt to capture cellular proces~ws accuratl'lv requires 

til<' ('())lstrllctiou of highl.Y cOlllplex lIludds, and so tllPre is still a Jl('ed for dl'\'elopillg 

nIPtllOds which reduct, the HmOUllt. of tirne and COlllputt'r 1)0\\'('1' lH'edl'd to carry out 

sillllllations, 

To conclUlk. this C'hapt<'l' 1m,,;; illllstrated the illlpact OIJ thl' probability of 1~'s()gl'IlY 

of 011<' aspc('\ of I he gl'netic swit(,h iu St.x phages. The strll('tll1'<' awl bdt:l\'iollr of tIl!' 

genetic switch in Stx phages plays a major role ill <ietenlliuing the It'wl of toxin rplpilsP 

alld hpuc<' tltp spn'ad of disea.'it'. and thl' approach of this Chapt('r provides a i>a.'iis for 

flltUr<~ Illodelling inV<'stigations in this an'H, 
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Chapter 7 

Conclusion 

This thesis has considered models at hoth the populat ion and lllokclllar level in 

order to investigate the dynamics of t.emperate phages and their host cells. in part iCIIlar 

Stx phages and the relat.ed phage lambda. Three til1lt'scales have \JPCll cOllsid('f(-d: 

cellular tillle. ecological time, and evolutionary time. Cnderstalldillg thl' factors which 

illfiucl1ce tlH- probability of lYSOg<'llY, and also the stability of lysogcllS. is ('specially 

illlportaJlt ill the case of Stx phages because these charact.eristics are dirl'ctly related 

to the rate at which Shiga-toxins are released into till' envirolllnenL and hem'e thl' risk 

of out breaks of disease in humans. 

A .Jacobian stability analysis was applied to the populati, ill dynamical model of 

phages and bacteria of Stewart and Levill (1984). The fll11 Illodel inciu(lPd tcmperate 

awl virulent phages, and two bacterial populations, one of which wa.", sensit ive to phage 

infection and one which was resistant; a number of sub-modeb were also considered. For 

each model it was possible to identify equilibrium points, containing all possiblt' types of 

phage and bacteria. at which the populations would remain constant. Simulations were 

carrit'd out in order to illustrate different scenarios such as the coexistence of temperate 

awl virulent phages, and the successful invasion of a virulent phage population by 

temperate phages; this wa.'> achieved hy varying parameters such as t he adsorption 

rates and burst sizes of the two phage stra.ins, the rate at which resourceS flow into 

the I.'nvironlllent, and the rate of growth of the hacterial populations. The results 

of tht' simulations were supported by analytical derivations of fea.sibility and stability 

criteria for the model cfluilihria, whcn~ possihle. It WIl .. 'i shown that th£' ontcome of 

('omp(-tition hetwcen It virul('nt and a temperate phage strain depends on particular 

paraml'ter \"alu('s, in particular tlIP adsorptioll rates and hurst. sizt's of the two strains. 

and also thl' probability of lysogeny and the induction rate of the temperate strain. 

An adaptive dynamics approach wal:i applied to the 11it tIer (1996) pupulation dy­

nllmical lIlodel of terupcratt- phages and bacteria, in order to investigate the evolution 

of tcmperate phages. A tradl'-of1' l'l'lationship was introduced snch that the induction 
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rat.e of l.vsogells was all illCl'l'ai'iillg flluctioll of the pruhahilit,v of lysogeu,\', This type 

of Ill(}(kllillg is Ilsed to identify f'vullltiullary sillglliaritil's, which an' poillts whi('h ('\'0-

lutiou llloves either towards or away from. It was showu that attractor aud J'('jwllor 

singularities are possible, but branching points, which an' associau'd with s~'lllpatri(' 

speciat.ion. do not arise. Further research is needed to inV('stigate whether t he absence 

of branching points is simply a feature of the particular mo(kl ('ollsicipred. or reflpds an 

actual chamct eristic of temperate phage populations. An initial approach could be to 

idclltify a different trade-ofr rciationship, p<'rhaps illvulving the prohahilit~· of 1~'sogeIlY 

as befort:', but replacing tht:' illductioll rate with a dif[Nent qualltity (e.g. hurst size. 

a.dsorption rate t:'tc.), and thell to filI(I out whether branchillg occurs. 

The stability of Stx I.vsogens was also investigated. It was showll h()\\' a model 

of the lambda molecular switch (Santillan and t>.lackey. 20(4) could be ('xtencied to 

Illodel Six phages Hi'i wl'IL In the literature it has been reported that there an' Stx 

phage's which difrl'[ from phage lambda in terms of the 1lI1miwrs of billdiug ~itl's at 

the molecular switch. and also the billdillg pnergil's between bindillg sitl's alHl key 

regulatory proteins. Hence, various Stx 'scenarios' were cOllstrudf'd whi('h rpflel'tpd 

tlw5(' known l'ilaraetl'ristics, It wa~ found that the difrpn'llcc' in molecular hiuding 

Plwrgies between Stx and lambda phages does account for tIll' lower stabilit~· of Stx 

lYSOgl'T1S. Tll£'re is scope for further modelling work t () 1)(' dow in this area, ouce all 

the relevant biudillg energies have been measured alld gCllollle ,;truC't.ures determined 

for part.icular Stx phages. 

Thl' illfhll'IICe of selected l'IIViWlllll('lItal (,(JlIdit ions on Stx lysogens was also ex­

plored, again using a scenario-based approach. Both temperature and nutrient level in 

the environment influence the growth rate of the host cell (Bremer and Dennis, 1996), 

awl this in tum may infhlCllCl' the stahility of the' lysogell. Results showed that the 

degradation rate of the phage regulatory prot.ein el, leI, plays a significant roll' in 

determining whether ehanges in temperature or nutriellt kvel result in an iucrt'ase or 

decrease ill stability. With both temperature and nutrient level fixed, it was found 

that all increase in Ir/ leads to lower st.ability. This may he explained ill terms of a 

threat to the host survival: high values of If'! occur when th('re is a thr('at to the host. 

such as the presence of UV light (Pt:1.'ihlle, 2004), awl reduced lysogen stability undcr 

t h('s(' condit ions is likely to illlprove the fitness of t he phage population: t lH' new phages 

which are rekai'ied 011 induction lIlay have the opportunity to iIlfpct ncw cells and so 

illcrease the chalices of survivaillf t.he pha.ge populatioll. 

The situation is llIore complicated when "Id is fixed, and either telllperature or 

IIl1t riellt level is allowed to vary. For the ranges of t.emperat ures a.ud llutriellt levels 

considered, it was shown tha.t for low values of "Id, an increase in temperat ure or 

1I11tricnt l('vel t.cllCkd to illcrl'Hse lysogl'n st.ahilit.y; however, for high values of Id. nn 
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increase in telllperatllrp or nutrient level result('d in H n~dl\('[i()lI ill l,vsogell stahility, 

Progress was llHHlp in \llld(~rstCllldillg tlie llWt h('JIln ti(,H 1 r{'aSOllS for t lip OCC\I!'l'JlCP of 

tlHo'sf' illtere"tillg patteJ'\ls; howl'v(~r. tlie il1lplications in a biological (,OIltl'Xt art' less 

clt'ar, TIH'n.forp t'xIH'riIllPlltal \\'ork would be usdul to ('ollfinll tli(' res\llts ill pradic(', 

A stochastic model of the llUllhda gf'net.ic swit.ch (Arkin et ai, 1 !)q~) w<\" IJl()(lifit'cI 

in orcipr to investigate the probability of l,vsogcllY in Stx phngps, Stx s('eltarios wert' 

constructed with differeJlt values of the binding pnergy (,OJlstallt. and t.he result s "howed 

tliat weaker bindillg energies were associated with lower probahilities of l~'sogl'll~" Thus 

the weaker hinding energy in Stx phages (compared to phage lalllhda) Ipads to a grpatpr 

proportion of lytic infections and hence illcrea1'les the rate of toxin rPieasl' into the 

environment, 

There an' many possibilities for future l'l'search, Studies in atiapti\'(' d~'IJalllics 

could he extended to considering the coevolution of temperate phag('s and ba(,teria, 

The lllc)(kiling of C'ompetitiull between known Stx phage strains such a..'i H3;}\\' and 

II1913 ('ould a\so be developed, in conjunction with experinll'ntal work, An important 

q\\('stion to be ('cl\lsiderec! is l\iche ditfen'lltiatioll amol1gst Stx straills aud the degree 

to which competition infiucllccs niche owriap. 

It is currently lIot c\par whether or how Stx phages deriw fitness advanlagt' from 

tlwir ability to SYllt hesizl' toxillS (Herold et al, 20(4). However, it may be speculated 

that. the presence of the reic'a1'led toxins alters th(' ('nvirOllllH'ut ill snch It way that there 

is a bendit to the host, such as all increcu;(' in fWI\ilahk resources. The phage populatioll 

would tht'll bcnefit frolJl having a greater supply of lIuinfl'd.cd host cells to infl:'(:t, It is 

also likely that Stx phages confer many other fUllctions upon tlll'ir hosts. and tlll'reby 

increase host fitness, but few such functions haw as yet been discoven'd (Allison. 2007). 

Futmc experinwntaJ and IIlodelling work may slH'd light on these qlH'stions, 

Given appropriat.e data, there is also plenty of scope for further investigations into 

t IIp impact of environmental conditions on hoth individual cells and populations of St x 

Iysogells. In particular, this t.hesis has considered seperately the influence of nutrient 

h'vel and temperature on l,Vsogell stability illdirectly (i,p, via their infillPnce on the ho~t 

growth rate), but it would be interesting to study their combined f'fff'ct - for exampIP. 

what happens if an inc}'('Cl1'l(' in t.elllperature is accolllpanied by a deCl't'il.'il' iu l1utrieut 

!P\,d, ExpnilllPntall,V detel'luiuing the E. coli growth ralP at differl'nt nutrient I(,\,!'\:,; 

ilIHI tl'lIlpl'rat mes (i.l'. extending the work of Bremer and OeIlnis (1996)) would l'nahlt' 

a prelilJlinary iUVl:'stigat ion of this question. 

Thl'l'l' is currently a shortage of eXIH.'rimental data relatiIlg to Stx phages. aIld 

tlu'rpfol'l' nlllch of the mOlIl'lliIlg work in this thesis ha,,,; relied on knowledge of phagl' 

lambda, In the future. the biuding euergies and other paral11etl'rs involved in the Stx 

JIloiP{'ular swit('h will be det('rmi!led, and othrr diffrrr!l('rs betwepn tlJ(> Stx and lambda 
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switcill'S will ('Illl'rg(' \H'sidps t1lOSI' <'ollsi<il'rl'd ill this thesis - for ('XCllllph', the flllH'tiull 

of t h(, Hilt i-n'I))'('ssor g(~IW ill the Stx pllng<' (1)2,1[5 (Fogg d al. 2U(7), As lm()\dl'<ig<' uf t hI' 

Stx swi t ('h increases tllere wi II be an opport un i Iy for I'l'visi t ing 1 he lll()(il'ls (,OIlsiderl'd 

in this thesis in order to achievt' (\ doser COITl'Spoll<i<'JICl' with reality. 

?\cw Stx strains continue to Ill' dis(,O\,t'rt'd ),(·gularly and out bn'aks of Stx-lIlcdiatcd 

disea.'il' continue to occur (Allison. 20(7). Theoret ical work. such :t.'i I ha t present I'd 

in this thesis, represent au important COllt ribut.ion in dt'tl'rmininf!; how t hest' phagps 

interact with their hosts in cellular, ecological and evolutionary tillle: this thereby con­

tributes to a hetter understanding of the evolut.ion of phage strains with consequeuccs 

for limiting the sprea.d of disease among hUlIlans. 
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