5 research outputs found

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    Get PDF
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities

    Ex Situ LIBS Analysis of WEST Divertor Wall Tiles after C3 Campaign

    No full text
    Fuel retention monitoring in tokamak walls requires the development of remote composition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study investigates the feasibility of the LIBS method to analyse the composition and fuel retention in three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The investigated samples originated from tile regions outside of strong erosion and deposition regions, where the variation of thin deposit layers is relatively small and facilitates cross-comparison between different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with depth profiles determined by other composition analysis methods, such as glow-discharge optical emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio, investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions with negligible erosion and deposition, these impurities were clearly detectable during the first laser shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot. LIBS investigation of samples originating from the deposition regions of tiles may further clarify LIBS’ ability to investigate trace impurities

    Gross and net erosion balance of plasma-facing materials in full-W tokamaks

    Get PDF
    Gross and net erosion of tungsten (W) and other plasma-facing materials in the divertor region have been investigated in deuterium (D) and helium (He) plasmas during dedicated experiments in L- and H-mode on ASDEX Upgrade and after full-length experimental campaigns on the WEST tokamak. Net erosion was determined via post-exposure analyses of plasma-exposed samples and full-size wall components, and we conclude that the same approach is applicable to gross erosion if marker structures with sub-millimeter dimensions are used to eliminate the contribution of prompt re-deposition. In H-mode plasmas, gross erosion during ELMs may exceed the situation in inter-ELM conditions by 1-2 orders of magnitude while net erosion is typically higher by a factor of 2-3. The largest impact on net erosion is attributed to the electron temperature while the role of the impurity mixtures is weaker, even though both on ASDEX Upgrade and WEST significant amounts of impurities are present in the edge plasmas. Impurities, on the other hand, will lead to the formation of thick co-deposited layers. We have also noted that with increasing surface roughness, net erosion is strongly suppressed and the growth of co-deposited layers is enhanced. In He plasmas, gross erosion is increased compared to D due to the higher mass and charge states of the plasma particles, resulting from larger energies due to sheath acceleration, but strong impurity fluxes can result in apparent net deposition in the divertor. Our results from ASDEX Upgrade and WEST are comparable and indicate typical net-erosion rates of 0.1-0.4 nm s(-1), excluding the immediate vicinity of the strike-point regions.Peer reviewe

    Gross and net erosion balance of plasma-facing materials in full-W tokamaks

    Get PDF
    | openaire: EC/H2020/633053/EU//EUROfusionGross and net erosion of tungsten (W) and other plasma-facing materials in the divertor region have been investigated in deuterium (D) and helium (He) plasmas during dedicated experiments in L- and H-mode on ASDEX Upgrade and after full-length experimental campaigns on the WEST tokamak. Net erosion was determined via post-exposure analyses of plasma-exposed samples and full-size wall components, and we conclude that the same approach is applicable to gross erosion if marker structures with sub-millimeter dimensions are used to eliminate the contribution of prompt re-deposition. In H-mode plasmas, gross erosion during ELMs may exceed the situation in inter-ELM conditions by 1-2 orders of magnitude while net erosion is typically higher by a factor of 2-3. The largest impact on net erosion is attributed to the electron temperature while the role of the impurity mixtures is weaker, even though both on ASDEX Upgrade and WEST significant amounts of impurities are present in the edge plasmas. Impurities, on the other hand, will lead to the formation of thick co-deposited layers. We have also noted that with increasing surface roughness, net erosion is strongly suppressed and the growth of co-deposited layers is enhanced. In He plasmas, gross erosion is increased compared to D due to the higher mass and charge states of the plasma particles, resulting from larger energies due to sheath acceleration, but strong impurity fluxes can result in apparent net deposition in the divertor. Our results from ASDEX Upgrade and WEST are comparable and indicate typical net-erosion rates of 0.1-0.4 nm s(-1), excluding the immediate vicinity of the strike-point regions.Peer reviewe

    Monitoring of tritium and impurities in the first wall of fusion devices using a LIBS based diagnostic

    No full text
    | openaire: EC/H2020/633053/EU//CAMART2 | openaire: EC/H2020/739508/EU//EUROfusionLaser-induced breakdown spectroscopy (LIBS) is one of the most promising methods for quantitative in-situ determination of fuel retention in plasma-facing components (PFCs) of magnetically confined fusion devices like ITER and JET. In this article, the current state of understanding in LIBS development for fusion applications will be presented, based on a complete review of existing results and complemented with newly obtained data. The work has been performed as part of a research programme, set up in the EUROfusion Consortium, to address the main requirements for ITER: (a) quantification of fuel from relevant surfaces with high sensitivity, (b) the technical demonstration to perform LIBS with a remote handling system and (c) accurate detection of fuel at ambient pressures relevant for ITER. For the first goal, the elemental composition of ITER-like deposits and proxies to them, including deuterium (D) or helium (He) containing W-Be, W, W-Al and Be-O-C coatings, was successfully determined with a typical depth resolution ranging from 50 up to 250 nm per laser pulse. Deuterium was used as a substitute for tritium (T) and in the LIBS experiments deuterium surface densities below 1016 D/cm2 could be measured with an accuracy of ∼30%, confirming the required high sensitivity for fuel-retention investigations. The performance of different LIBS configurations was explored, comprising LIBS systems based on single pulse (pulse durations: ps-ns) and double pulse lasers with different pulse durations. For the second goal, a remote handling application was demonstrated inside the Frascati-Tokamak-Upgrade (FTU), where a compact, remotely controlled LIBS system was mounted on a multipurpose deployer providing an in-vessel retention monitor system. During a shutdown phase, LIBS was performed at atmospheric pressure, for measuring the composition and fuel content of different area of the stainless-steel FTU first wall, and the titanium zirconium molybdenum alloy tiles of the toroidal limiter. These achievements underline the capability of a LIBS-based retention monitor, which complies with the requirements for JET and ITER operating in DT with a beryllium wall and a tungsten divertor. Concerning the capabilities of LIBS at pressure conditions relevant for ITER, quantitative determination of the composition of PFC materials at ambient pressures up to 100 mbar of N2, the D content could be determined with an accuracy of 25%, while for atmospheric pressure conditions, an accuracy of about 50% was found when using single-pulse lasers. To improve the LIBS performance in atmospheric pressure conditions, a novel approach is proposed for quantitative determination of the retained T and the D/T ratio. This scenario is based on measuring the LIBS plume emission at two different time delays after each laser pulse. On virtue of application of a double pulse LIBS system, for LIBS application at N2 atmospheric pressure the distinguishability of the spectra from H isotopes could be significantly improved, but further systematic research is required.Peer reviewe
    corecore