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Abstract: Fuel retention monitoring in tokamak walls requires the development of remote compo-
sition analysis methods such as laser-induced breakdown spectroscopy (LIBS). The present study
investigates the feasibility of the LIBS method to analyse the composition and fuel retention in
three samples from WEST divertor erosion marker tiles after the experimental campaign C3. The
investigated samples originated from tile regions outside of strong erosion and deposition regions,
where the variation of thin deposit layers is relatively small and facilitates cross-comparison between
different analysis methods. The depth profiles of main constituents W, Mo and C were consistent with
depth profiles determined by other composition analysis methods, such as glow-discharge optical
emission spectroscopy (GDOES) and secondary ion mass spectrometry (SIMS). The average LIBS
depth resolution determined from depth profiles was 100 nm/shot. The averaging of the spectra
collected from multiple spots of a same sample allowed us to improve the signal-to-noise ratio,
investigate the presence of fuel D and trace impurities such as O and B. In the investigated tile regions
with negligible erosion and deposition, these impurities were clearly detectable during the first laser
shot, while the signal decreased to noise level after a few subsequent laser shots at the same spot.
LIBS investigation of samples originating from the deposition regions of tiles may further clarify
LIBS’ ability to investigate trace impurities.

Keywords: WEST tokamak; LIBS; composition analysis

1. Introduction

Fuel retention in the first walls and divertor of fusion reactors is a serious safety
issue in the exploitation of fusion energy because of the radioactivity of tritium [1,2]. The
monitoring of fuel retention requires the development of remote composition analysis
methods such as laser induced breakdown spectroscopy (LIBS) [3,4]. The LIBS technique
uses short laser pulses to ablate a small amount of material which forms plasma, and emits
light whose spectrum is characteristic of the elements originating from the investigated
material [4]. Application of consequent laser pulses at the same spot allows extracting
elemental depth profiles. In general, LIBS can determine the depth profiles in the form
of changes in the intensity of elemental lines as a function of laser shots, because the
actual depth ablated by each laser shot is not known with good accuracy. With the known
thickness of the investigated layers, the average ablation rate can be determined.

LIBS has been successfully applied for ex situ and in situ first wall composition analy-
sis of various tokamaks e.g., JET, ASDEX Upgrade, TEXTOR, EAST, KSTAR, Compass and
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FTU [5–20]. It was demonstrated that the method is able to determine the depth distribution
of the main constituents of the plasma facing components (PFC) and sometimes also the
trace elements [14,17,18]. Furthermore, the experiments have shown the usability of LIBS
for the measurement of spatial and depth distribution of fuel (D) in the PFCs. The quanti-
tative LIBS measurements of fuel retention in metallic first wall components originating
from tokamaks have remained unsuccessful. This is most likely due to the experimental
conditions used which were not optimized for quantitative measurements [19].

The cited LIBS studies have investigated surface layers of different tokamaks with
very different composition and properties: beryllium deposits on tungsten (W) and a
molybdenum (Mo) layered structure on carbon (C) from JET, a W marker layer on C from
ASDEX, graphite from TEXTOR, graphite deposits on specific W layers on copper from
KSTAR, SS316 or Inconel 625 screws from COMPASS, graphite from Aditya, Mo from FTU
and Mo, W or C from EAST. However, the use of the LIBS results obtained with one type of
materials in the analysis of other type of materials is not straightforward, due to matrix
effects. For example, LIBS measurements of compact and porous W layers exposed to
Magnum-PSI deuterium plasma have shown very different D signal strength even when
the layers had similar D retention according to NRA [21]. Therefore, it is necessary to
build a comprehensive knowledge base for different materials originating from different
tokamaks.

The WEST tokamak has superconducting magnets and actively cooled metallic PFCs
which operate with steady-state long pulses and high particle fluence; its aim is to test
the W divertor technology in an integrated tokamak environment [22–24]. A thorough
testing of the changes in the surface morphology and composition of PFCs has been carried
out by various methods [25–27]. LIBS is one method planned for the testing of elemental
composition of selected divertor samples and the fuel retention in them. LIBS has not
been previously used to investigate the elemental depth profiles and D retention of WEST
tokamak PFC tiles, while there is ongoing work to apply LIBS to in situ analysis in WEST.

The aim of the present study was to investigate the feasibility of the LIBS method for
the analysis of composition and fuel retention in samples originating from erosion marker
tiles removed from the WEST divertor after the experimental campaign C3 [25,26]. The
samples were obtained from the tile regions with expectedly small erosion and deposition.
Ion-beam analysis of the whole tiles showed that these regions have only thin deposit layers
with slowly varying composition and thickness [25]. This simplifies the cross-comparison
between different analysis methods carried out in adjacent tile regions. In the present
study, LIBS elemental depth profiles were compared with the profiles obtained by GDOES
and SIMS. LIBS’ usability for comparison of the amount of various impurities in different
samples was additionally investigated by determining the line ratios of the impurities and
tungsten. Furthermore, the possibility of quantitatively determining deuterium concen-
tration using the calibration-free (CF) LIBS method was assessed at the LIBS experimental
parameters suitable both for depth profile analysis and impurity detection.

2. Materials and Methods

Three samples investigated by LIBS, two samples investigated by GDOES and four
samples investigated by SIMS were part of the inner erosion marker tile #34 (34i) and the
outer erosion marker tile #22 (22o) [26]. The position of the samples on the lower divertor of
WEST is shown in Figure 1, together with a schematic illustration of the W and Mo layers on
C substrate constituting the marker tiles. The investigated sample had a cylindrical shape
with a diameter of 17 mm and a thickness of a few mm. According to scanning electron
microscopy (SEM) studies from cross-sections of similar samples, the actual thicknesses
of different layers varied and the average roughness of the graphite substrate together
with Mo and W coatings was approximately 2 µm, which was considerably larger than
the thickness of Mo marker layer (nominally 100 nm) [25]. The investigated LIBS samples
originated from the inner marker tile 34i regions at s coordinates 12.5 mm and 292.5 mm,
and from the outer marker tile 22o region at s = 546 mm. These regions were outside of the
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strong erosion and deposition regions where the composition of thin deposit layers varied
relatively slowly according to preceding ion beam analysis of whole tiles [25]. Therefore,
one can expect that the complementary GDOES and SIMS elemental composition depth
profiles from adjacent s coordinate positions can be used for comparison with LIBS results.
The GDOES samples were taken from the 34i marker tile at s coordinate of 273.5 mm and
from the 22o marker tile at s coordinate of 566.0 mm. The SIMS samples originated from
the 34i marker tile s coordinates 32.5 mm, 273.5 mm and 312 mm, and 22o marker tile
s = 566 mm.
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Figure 1. The positions of the erosion marker tiles in the WEST divertor and the positions of the
investigated LIBS samples together with the depiction of the layers of the erosion marker tile. The
positions are marked by red dashed rings. The position of the samples investigated by GDOES and
SIMS methods are shown by light-grey dashed rings.

GDOES uses a low-pressure, glow-discharge plasma of argon to sputter away the
surface of the measured sample. Subsequently, the sputtered material is excited into plasma
and analysed by optical spectroscopy. The gradual sputtering of the material layers allows
investigation of the elemental depth profiles of the samples. In the present study, the
analysis was carried out with Spectruma GDA 750 equipment [28,29].

SIMS method uses primary ion beam for sputtering the sample surface. The ejected
secondary ions are collected and analysed by mass spectrometry. In present study, a double-
focusing magnetic sector SIMS (VG Ionex IX-70S) with a 5-keV O2

+ primary ion beam at a
current of 500 nA was used for the measurements. The analysis area was 0.3 × 0.4 mm2

and an electronic gate was used to record the signal from the 10% central region.
Figure 2 shows the schematic setup used for LIBS studies. Ex situ LIBS experiments

were carried out in a vacuum chamber which was filled with argon to a pressure of 1 or
10 Torr. This pressure range was used because it allows good signal strength at narrow
linewidths of hydrogen isotope lines required for D/H distinction. A Nd:YAG laser by
Quantel (YG981C with 8 ns pulse length working at 532 nm) was focused perpendicularly
to the target surface using a lens with a focal length of 150 cm. The diameter of the spot
formed on the surface due to laser ablation was approximately 0.7 mm. Most of the LIBS
experiments were made with a laser pulse energy of 120 mJ, which resulted in a fluence of
33 J/cm2 and allowed good signal intensity and a relatively low ablation rate. The optical
emission originating from the plasma plume created by laser pulses was collected at 45
degrees with respect to the laser beam by two different spectrometers. A Czerny-Turner
type spectrometer (MDR-63) with focal length of 0.5 m, diffraction grating 1200 L/mm and
entrance slit width 15 µm was coupled with Andor iStar camera. The resulting spectral
resolution was 0.06 nm, enabling us to resolve Dα and Hα emission lines in the 20 nm
spectral window around 656 nm. A Mechelle 5000 spectrometer registering spectra in the
broad spectral window from 200 to 850 nm was used to investigate the emission of other
elements (W, Mo, C etc). The lines of W I and W II emission were further used to determine
the electron temperature from the Saha-Boltzmann plot [30], while the width of the Hα line
was used to determine electron density [31]. The time delay between the laser pulse and
registering of the spectrum was either 300 ns at the pressure of 1 Torr Ar or 1300 ns at the
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pressure of 10 Torr Ar. The gate width during the spectral recording was equal with the
used time-delay.
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Figure 2. Experimental setup for LIBS measurements.

3. Results and Discussion
3.1. GDOES Depth Profiles

The GDOES depth profiles of W, Mo and C are shown in Figure 3 for tile 34i at
s = 273.5 mm and tile 22o at s = 566 mm. Both depth profiles indicate the presence of a
0.5–2 µm thick W layer, a thin Mo containing layer, a 12 µm thick W layer and a 3–4 µm
thick Mo layer on a C substrate. The increased Mo signal at the depth between 0.5 and 2 µm
corresponds to the Mo marker layer, which is thinner than the roughness of the underlying
12 µm thick standard W layer. According to SEM studies, the roughness was approximately
2 µm while the Mo marker layer was only 100–200 nm thick [25]. Therefore, the depth
profile of the Mo marker layer is smeared out and the concentration of Mo does not reach
100 at. %. The thicknesses of other layers are consistent with the SEM results [25]. The
surface of the sample from the 34i tile at s = 273.5 mm also contained up to 17 at. % boron
(B) in the depth of 50–100 nm. In the second sample from the outer tile at s = 566 mm, B
was practically missing.
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Figure 3. GDOES depth profiles of W, Mo and C from tile 34i at s = 273.5 mm and tile 22o at
s = 566 mm.

SIMS depth profiles in Figure 4 show the distribution of elements (W, Mo, C, B, H, D)
in the topmost 1500 nm layer of the samples. The depth profile of Mo interlayer determined
by SIMS and GDOES was similar to the Mo signal from the Mo interlayer, reaching a peak
at a depth between 1000 and 1500 nm. An additional thin layer containing higher amounts
of C, B, D and H was formed on the surface of the topmost W coating as a result of plasma
exposure [25]. The thickness of the deposit layer depended on the sample position on
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marker tiles. In the case of inner tile #34i, the thickness was about 40 nm for s = 32.5 mm,
50 nm for s = 273.5 mm and 30–40 nm for s = 312 mm. The layer was practically missing
on the outer tile #22o, consistent with the GDOES results. The highest amount of B was
found at positions 273.5 mm and 312 mm, while C concentration was highest at 32.5 mm.
Mo is also present in the re-deposits. The thickness of the deposit layer slightly decreased
towards the edge of the inner tile at high s values (312 mm), consistent with the results
of the preceding ion beam analysis [25]. Nevertheless, the difference remained relatively
small, and justifies the comparison of LIBS results with the results of GDOES and SIMS at
adjacent positions.
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Figure 4. SIMS depth profiles of W, Mo, C, B, D and H from tile 34i at s coordinate 32.5 mm, 273.5 mm
and 312 mm, and tile 22o at s coordinate 566 mm.

3.2. LIBS Spectra

An example of the LIBS spectrum registered by Andor Mechelle spectrometer and
corresponding to the 15th laser shot is shown in Figure 5 in the wavelength range of
340–480 nm. According to LIBS depth profiles shown in Figure 6, the 15th laser shot
corresponds to a thickness of approximately 1.5–2 µm and ablated material both from the
Mo marker layer and surrounding W layers. As a result, the spectra contained numerous
W I, W II, Mo I and Mo II lines. The relative intensity of the W I and W II lines depended on
the Ar pressure and recording delay time, W II being higher at lower pressure and shorter
delay time. W I and W II lines used in subsequent analyses are shown in Table 1. The
average values of the intensities of these lines were used in the construction of W depth
profiles shown in Figure 5. The Mo lines were relatively weak and usually not clearly
distinguishable from the W lines. The Mo I line at 550.65 nm was one exception, and this
line was subsequently used for the reconstruction of Mo depth profile. The well-known
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strong C I line at 247.86 nm was practically at the noise level at both applied pressures,
and its intensity could not be detected from single LIBS spectra. At lower pressures, two
C II lines at 657.81 and 658.29 nm were clearly distinguishable. The intensities of these
lines were therefore used for the construction of the C depth profile. The emission lines of
several trace elements were also detectable, usually during the first few laser shots, and
these lines are described later in the text.
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Figure 5. Selected range of LIBS spectra collected by Andor Mechelle 5000 spectrometer after 15th
laser shot at 10 Torr Ar pressure and 1300 ns delay time.

Figure 6. LIBS depth profiles of W and Mo, as the function of LIBS shot number, from 5 different
spots of each sample. Depth profiles of C are shown for comparison. The intensity of the average
values of W lines, Mo line at 550.65 nm and C II line at 657.81 nm was used for construction of depth
profiles.
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Table 1. W I and W II lines used for the construction of W depth profiles and Saha-Boltzmann plots.

Line Ei, eV Ej, eV giAij·107, s−1

W I 354.52 nm 3.49 0 0.96
W I 370.81 nm 3.71 0.37 2.0
W I 373.04 nm 5.78 2.46 10.4
W I 376.01 nm 3.71 0.41 1.4
W I 378.08 nm 3.64 0.37 2.1
W I 381.75 nm 3.61 0.37 2.2
W I 386.80 nm 3.57 0.37 4.1
W I 388.14 nm 3.79 0.60 2.5
W I 410.27 nm 3.79 0.77 3.4
W I 426.94 nm 3.27 0.37 1.5
W I 430.21 nm 3.25 0.37 2.5
W I 468.06 nm 3.25 0.60 0.98
W I 484.38 nm 2.97 0.41 0.95
W I 488.68 nm 3.31 0.77 0.89
W I 500.62 nm 3.25 0.77 0.84
W I 501.53 nm 3.07 0.60 0.49
W I 505.32 nm 2.66 0.21 0.57
W I 522.47 nm 2.97 0.60 0.60
W I 551.47 nm 2.66 0.41 0.22
WII 316.00 nm 5.76 1.84 6.38
WII 337.61 nm 5.55 1.88 6.03
WII 340.19 nm 5.5 1.86 4.22
WII 346.35 nm 5.24 1.67 2.37
WII 361.38 nm 5.24 1.81 4.60
WII 364.14 nm 4.48 1.08 1.98
WII 373.62 nm 5.55 2.23 3.42
WII 385.15 nm 4.85 1.63 1.22
WII 434.81 nm 4.48 1.63 1.01

3.3. LIBS Depth Profiles

The depth profiles constructed from the selected W, Mo and C lines are shown in
Figure 6. Depth profiles from five different spots are shown for each sample. The W
intensity was nearly constant from shot 1 to 50 in the case of 34i s = 12.5 mm, shot 1 to 120
in the case of 34i s = 292.5 mm and shot 1 to 140 in the case of 22o s = 546 mm. At higher
LIBS shot numbers, W intensity slowly decreased to zero. Mo intensity exhibited two peaks
in the depth profiles. A first Mo peak started to appear at the LIBS shots 3-5 and reached
maximum at 10 to 15 shots, depending on the sample s coordinate. Subsequently, the Mo
intensity slowly decreased. A second Mo intensity peak appeared at approximately 100 or
120 shots and reached maximum at 120 shots or 160 shots for 34i s = 12.5 mm and other
samples, respectively. At even higher LIBS shot numbers, Mo intensity slowly decreased.
The appearance of the second Mo peak coincided with a reduction in the W intensity.
C intensity started to grow at the shot numbers where the second Mo peak reached its
maximum.

The depth profiles of W, Mo and C were consistent with the expected W and Mo
layers in marker tiles, as shown in Figure 1, and experimentally determined GDOES depth
profiles. The first Mo peak, starting from 3–5 shots and slowly decreasing up to 70–80 shots,
is attributable to the thin Mo marker layer. The Mo marker layer is much broader in the
LIBS depth profile than expected from SEM images [25]. The explanation is same as with
GDOES depth profiles, i.e., the roughness of the underlaying W coating surface is much
larger than the thickness of the Mo marker layer. The second Mo intensity peak in the
depth profile was also smeared out, and this can be attributed to the peculiarities of laser
ablation during LIBS measurements. With the Gaussian energy profile of laser beam, the
more energetic central part of the Gaussian profile results in a higher ablation rate in the
centre of laser spot [13]. Therefore, the laser crater becomes both deeper and wider with
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increasing laser shot numbers, and each subsequent LIBS spectra contains information at
increasing thickness range [13,32].

The average LIBS depth resolution was 100 nm/shot, and it was determined by
dividing the thickness of the total coating with the number of laser shots required to reach
the C substrate. We must stress that the ablation rate may vary for different sublayers
and co-deposits on the surface due to the different properties of these layers. However,
the determination of the ablation rate of specific layers was more complicated, because
of the variation in the actual thickness of the layer (e.g., 1–2 µm for the topmost W layer),
roughness of the surfaces (up to 2 µm) and variability of the number of laser shots required
to reach the next layer. For underlaying layers, distinguishing between different layers
becomes even more complicated due to the uneven ablation rate along the LIBS spot
caused by Gaussian beam shape. Nevertheless, the ablation rate of topmost W layer can be
estimated to be approximately in the range of 200–300 nm/shots.

Good repeatability of depth profiles collected from different spots of the same sample
allowed the use of multi-spot averaging [33]. In the case of the sample obtained from tile
34i s = 12.5 mm, one depth profile was left out from averaging because it clearly diverged
from the other four profiles. The standard deviation of the nearly constant W intensity from
shots 50–100 decreased by two times when using multi-spot averaging over 5 spots of same
sample. However, it must be noted that the samples used in present study originated from
tile regions where the spatial variation of the composition remains small. In tile regions
with strong gradients along the surface, the application of multi-spot averaging may result
in loss of information.

3.4. Detection of Trace Elements

The averaging of the spectra collected from multiple spots of same sample allowed us
to improve the signal-to-noise ratio and investigate the presence of trace impurities such
as C, B and oxygen (O) detected also by complementary methods of GDOES and SIMS.
In addition, we observed spectral lines corresponding to Ca, Na, Cu, Mg and Fe during
the first laser shot at a fresh LIBS spot. Some of these elements may originate from the
deposition of a thin surface layer during the plasma exposure, and some from the surface
contamination after plasma exposure. The averaged spectra around the C, B and O lines
are shown in Figure 7 for LIBS shots 1 and 2. A strong C I 247.86 nm line was close to
the W II 247.77 nm line and was clearly detectable only during the first shot. There were
two clearly detectable B I lines at 249.68 nm and 249.77 nm. Both C I and B I lines were
fitted by a Gaussian profile. A broad feature at 777 nm consists of an O triplet which was
not separated with the spectrometer used in present study. This line was also fitted by a
Gaussian profile.

Figure 7. LIBS intensities of C I line at 247.86 nm, O I triplet at 777 nm and B I lines at 249.68 and
249.77 nm. The spectra of the first and second laser shots are averaged over 5 measured spectra
collected at different spots of the same sample.

The intensities of the Dα and Hα lines at 656.1 nm and 656.28 nm were determined
from the spectra obtained by another spectrometer (MDR) with better spectral resolution
(Figure 8). There was some overlap of the Dα and Hα lines, and there was a weak W I line
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at 656.32 nm which overlapped with the Hα line. The intensities of the Dα and Hα lines
and the W I line were obtained from the experimental spectra by fitting Dα and Hα peaks
with a pseudo-Voigt profile, while the intensity of the W I line was obtained by fitting with a
Gaussian profile. The value of full width at half maximum (FWHM) of the Gaussian profile
was determined by the apparatus function of the spectrometer (0.06 nm). The pseudo-Voigt
profile is the sum of Gaussian and Lorentzian profiles where the FWHM value of the
Gaussian profile was set to the value of the apparatus function and the FWHM value of the
Lorentzian profile was the fitting parameter. The FWHM value of the Lorentzian profile
was in the range of 0.25–0.45 nm for the first laser shot, and 0.08–0.11 nm for subsequent
laser shots at the same LIBS spot. According to the results of fitting, the intensity of the Dα

line decreased relatively quickly to noise level, while the Hα line intensity was very high
during the first shot and then decreased to a constant level. The intensity of the Hα line
remained clearly visible in spectra (Figure 8) and remained at least an order of magnitude
higher than the intensity of Dα line for all investigated samples. This contradicts the SIMS
data wherein the H and D signal became comparable at a depth higher than 1000 nm
(Figure 4). One possible explanation for this discrepancy is the influence of the surrounding
moisture.

Figure 8. LIBS intensities of Dα and Hα lines at 656.1 and 656. 28 nm after 3rd shot in sample 34i
s = 12.5 mm at 10 Torr Ar and delay time 1300 ns. The peaks of Dα and Hα lines were fitted with
pseudo-Voigt contours, while the W I line at 656.32 nm was fitted with Gaussian. Black rings show
experimental measurements and solid lines show fitted spectral lines.

In the investigated tile regions with negligible erosion and deposition, the impurities
(B, O, C) and fuel D were clearly detectable during the first laser shot, while the signal
decreased to noise level after a few subsequent laser shots at the same spot (Figure 9).
It must be noted that C could also originate from previous LIBS measurements where
some of C could redeposit on the sample surface, and carbon is therefore not shown in
the graphs. The intensities of B and D were above noise level during the first 2–3 LIBS
shots. This is consistent with the SIMS depth profiles in Figure 4 which show the co-
deposition of a thin surface layer with higher D and B concentration. Both SIMS and
GDOES showed considerably higher amounts of B at s = 273.5 mm of tile 34i, and much
lower B concentration on the tile 22o at s = 566 mm. LIBS spectra determined at the adjacent
position of the same sample (s = 546 mm) also showed the lowest B concentration, but
the difference between other samples was less pronounced. This can be at least partially
attributed to relatively high ablation rate of LIBS which was approximately 200–300 nm for
the surface layer, while B concentration peaked in a 10–20 nm thick surface layer according
to SIMS measurements. According to SIMS measurements, D intensity was highest in the
tile #34i at s = 273.5 mm, which is consistent with the highest D signal determined by LIBS
for the same tile at s = 292.5 mm. The O peak was clearly detectable only during the first
LIBS shot, which suggests its origin from water adsorbed on the surface. This is consistent
with the observation that the H line was also higher during the first shot.
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Figure 9. Depth profiles of B, O and D line intensities during first 10 laser shots on three samples.
The intensities are determined from averaged spectra of 5 (or 4) different spots of the same sample.
In the case of the sample 34i s = 292.5 mm, the D intensity was about 100.

Figure 10 compares the SIMS and LIBS signal ratios for B/W, C/W and D/W where
the signal for elements was integrated over top layer of the depth profile. In the case of
SIMS, the signal of each element was integrated over the first 1000 nm up to the Mo marker
layer. The ratio was then calculated by dividing the integral of B, C or D with the integral
of W. The ratios for samples at the tile positions s = 273 mm and 312 mm were averaged
because these samples were on opposite sides of the LIBS sample at s = 292.5 mm. The LIBS
line intensities were summed over the first 4 laser shots because the signal from the Mo
marker layer started to increase at 4-5 laser shots. Neither the SIMS nor LIBS signals were
calibrated to actual elemental compositions and the intensities of specific LIBS spectral lines
are not directly comparable with the SIMS signals of the elements. Therefore, both SIMS
and LIBS ratios were normalized for semi-quantitative comparison of the two methods.
For normalization, the elemental ratios (for example B/W) of the samples were divided by
the highest ratio of the same elements among the samples.
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Figure 10. B/W, C/W and D/W ratios for SIMS signals and LIBS line intensities.

Both SIMS and LIBS line ratios corresponding to different samples followed the same
trends. However, the SIMS line ratios of different samples varied more than an order of
magnitude, while in the case of LIBS, the variation was less pronounced. One possible
reason for relatively high LIBS signal for B and C in the samples where the SIMS signal
was nearly zero could be the interference from the lines of other elements (see Figure 7).
Furthermore, it is possible that laser shots 2–4 ablated some additional material from the
surface layer and therefore increased the intensity of B and C.

3.5. LIBS Plasma Plume Parameters

Electron density and electron temperature in the LIBS plasma plume are important
parameters which determine the intensities of the emission lines in the LIBS spectra. Knowl-
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edge of these parameters is further required for calibration-free LIBS (CF-LIBS). Electron
density ne was determined from the tabulated data of FWHM values of the Lorentzian
profile component of the Hα line [21,31]. For each measurement spot of the sample, the
average FWHM value of 2–20 first laser shots was used to determine the electron density.
The FWHM values of the spectra corresponding to the first laser shot were considerably
higher and were therefore omitted in the calculation. The electron temperature Te was
determined from the Saha-Boltzmann plot of W lines (Figure 11b). In addition, the temper-
atures of W neutrals (W I) and ions (W II) were separately determined from the Boltzmann
plot (Figure 11a) [30,34,35]. The lines used for the construction of the Boltzmann and
Saha-Boltzmann plot were averaged over 2–100 laser shots because the intensities remained
nearly constant in this range. The formulae used in the construction of Boltzmann and
Saha-Boltzmann plot were the following:

E∗
i = Ei + Eion

ln
(

Iij/gi Aij
)∗

= ln
(

Iij/gi Aij
)
− ln

(
2(2πme)

3/2(kBT)3/2

neh3

)
where Ei is the excitation energy of the emitting neutral or ionized specimen, Eion is the
ionization energy, Iij is the intensity of the emission line, gi is the statistical weight Aij is
the transition probability, me is the electron mass, kB is the Boltzmann constant, h is the
Planck constant and ne is the electron density. Ionization energy Eion and the second part
of the second equation were used only in the case of ions.
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Figure 11. Boltzmann plot of W I and W II (a) and Saha-Boltzmann plot for W (b) determined from
the W I and W II lines shown in Table 1.

The values of the electron densities and electron temperatures corresponding to each
sample are shown in Figure 12. Values of electron densities averaged over 5 spots of each
sample varied between 6–8 × 1015 cm−3, while values of electron temperatures varied
from 0.72–0.74 eV. Similar plasma plume properties suggest that all samples had similar
composition and mechanical properties.
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The concentrations of the different elements can be calculated by CF-LIBS method
when the LIBS plasma plume is in local thermodynamic equilibrium (LTE) and the lines
of each element are detectable. One of the main LTE conditions is the McWhirter crite-
rion which requires that the electron concentration in the plasma plume exceeds a certain
threshold value (in the order of magnitude of 1017 cm−3 for H and its isotopes and 1016

cm−3 for W) [36]. In present study, the electron densities remained at least an order of
magnitude lower than required for LTE condition for H isotopes. McWhirter criterion was
practically fulfilled for W lines. In addition to McWhirter criterion, the thermodynamic
parameters Te and ne of the transient and non-homogeneous laser plasma plume have to
fulfil additional criteria to ensure LTE. The relaxation time of the emitting plasma species
must remain shorter than the time constant for variation of thermodynamic parameters,
and the diffusion length of ions and atoms must be shorter than the variation length of
the thermodynamic parameters [36]. These characteristics were not determined in present
study, but for metal atoms and ions, the relaxation times and diffusion lengths are generally
much shorter than the characteristic times and variation lengths of thermodynamic pa-
rameters [31,36]., However, the characteristic time-scales of the parameters are expectedly
shorter than the relaxation times for H and D atoms [31,36]. For tungsten, a small deviation
from LTE could be hinted at by differences in W neutral and ion temperatures, while this
difference remained within the scatter of shot to shot values.

The application of CF-LIBS method for determination of the D and W concentration
ratio from the intensity ratio of the Dα line at 656.1 nm and W I line at 657.39 nm resulted in
D/W ratio values of 0.2–0.35 during the LIBS shots, excluding the first laser shot. The first
LIBS shot was omitted because the W I line at 657.39 nm was nearly missing in the spectra.
The value of the D/W ratio is clearly higher than the expected value and shows that the
measurement conditions were not suitable for achieving LTE conditions for H and D atoms
and thus not suitable for the application of CF-LIBS method. Additional experiments must
be carried out in the future to find more suitable conditions for CF-LIBS. One option is to
carry out measurements at higher gas pressures where the electron density is known to
increase. At higher pressures, the distinguishing of hydrogen isotopes will require longer
delay times, and at comparable line widths the line intensities will be lower [37]. This
limitation could be mitigated by using multi-spectral averaging with a larger number of
LIBS spots, or improving the spectral collection efficiency [4]. In addition, it is possible to
increase the laser energy [38] even though it may reduce the depth resolution.

4. Summary and Conclusions

The LIBS depth profiles of the main coating components W, Mo and C, were consistent
with GDOES depth profiles.



J. Nucl. Eng. 2023, 4 108

The averaging of the spectra collected from multiple spots of the same sample allowed
the improvement of the signal-to-noise ratio and the investigation of the presence of trace
impurities such as D, O and B. However, the application of multi-spot averaging may result
in loss of information in tile regions with strong gradients along the surface. For ex situ
studies of the composition analysis of WEST tiles after C3 and C4 campaigns carried out
under the EUROfusion work-package PWIE, other more local and sensitive techniques can
complement the LIBS findings.

In the investigated tile regions with negligible erosion and deposition, these impurities
were clearly detectable during the first laser shot, while the signal decreased to noise level
after a few subsequent laser shots at the same spot.

The average LIBS depth resolution determined from the LIBS and GDOES depth
profiles was 100 nm/shot, while the depth resolution for the upper W layer was in the
range of 200–300 nm/shot. The depth resolution was sufficient for distinguishing different
W and Mo layers, while the thickness of the deposit layers containing high concentrations
of fuel D and impurities B and O remained below the depth resolution achieved in the
present study. It may still be sufficient for the determination of the total fuel concentration
in the layers.

LIBS investigation of samples originating from the regions of tiles with thick deposits
may further clarify LIBS’ ability to investigate trace impurities.
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