239 research outputs found
The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system
Background: Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent
in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable
difficulties exist when using these approaches in the field environment. In large scale epidemiological studies,
FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples.
However, there are some difficulties in the downstream processing of these cards which is essential for the
accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample
processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR.
Results: A comparison of five techniques was made. Detection from directly applied whole blood was less
sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%).
Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%)
although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was
not significantly different from direct DNA extraction from blood in the field (68.3%).
Conclusions: Based on these results, the degree of effort required for each of these techniques and the difficulty
of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed
by elution in Chelex®100 as the best approach
Using molecular data for epidemiological inference: assessing the prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania
Background: Measuring the prevalence of transmissible Trypanosoma brucei rhodesiense in tsetse populations is essential for understanding transmission dynamics, assessing human disease risk and monitoring spatio-temporal trends and the impact of control interventions. Although an important epidemiological variable, identifying flies which carry transmissible infections is difficult, with challenges including low prevalence, presence of other trypanosome species in the same fly, and concurrent detection of immature non-transmissible infections. Diagnostic tests to measure the prevalence of T. b. rhodesiense in tsetse are applied and interpreted inconsistently, and discrepancies between studies suggest this value is not consistently estimated even to within an order of magnitude.
Methodology/Principal Findings: Three approaches were used to estimate the prevalence of transmissible Trypanosoma brucei s.l. and T. b. rhodesiense in Glossina swynnertoni and G. pallidipes in Serengeti National Park, Tanzania: (i) dissection/microscopy; (ii) PCR on infected tsetse midguts; and (iii) inference from a mathematical model. Using dissection/microscopy the prevalence of transmissible T. brucei s.l. was 0% (95% CI 0–0.085) for G. swynnertoni and 0% (0–0.18) G. pallidipes; using PCR the prevalence of transmissible T. b. rhodesiense was 0.010% (0–0.054) and 0.0089% (0–0.059) respectively, and by model inference 0.0064% and 0.00085% respectively.
Conclusions/Significance: The zero prevalence result by dissection/microscopy (likely really greater than zero given the results of other approaches) is not unusual by this technique, often ascribed to poor sensitivity. The application of additional techniques confirmed the very low prevalence of T. brucei suggesting the zero prevalence result was attributable to insufficient sample size (despite examination of 6000 tsetse). Given the prohibitively high sample sizes required to obtain meaningful results by dissection/microscopy, PCR-based approaches offer the current best option for assessing trypanosome prevalence in tsetse but inconsistencies in relating PCR results to transmissibility highlight the need for a consensus approach to generate meaningful and comparable data
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
Inheriting library cards to Babel and Alexandria: Contemporary metaphors for the digital library
Librarians have been consciously adopting metaphors to describe library concepts since the nineteenth century, helping us to structure our understanding of new technologies. We have drawn extensively on these figurative frameworks to explore issues surrounding the digital library, yet very little has been written to date which interrogates how these metaphors have developed over the years. Previous studies have explored library metaphors, using either textual analysis or ethnographic methods to investigate their usage. However, this is to our knowledge the first study to use bibliographic data, corpus analysis, qualitative sentiment weighting and close reading to study particular metaphors in detail. It draws on a corpus of over 450 articles to study the use of the metaphors of the Library of Alexandria and Babel, concluding that both have been extremely useful as framing metaphors for the digital library. However, their longstanding use has seen them become stretched as metaphors, meaning that the field’s figurative framework now fails to represent the changing technologies which underpin contemporary digital libraries
Complete analysis of the B‐cell response to a protein antigen, from \u3ci\u3ein vivo\u3c/i\u3e germinal centre formation to 3‐D modelling of affinity maturation
Somatic hypermutation of immunoglobulin variable region genes occurs within germinal centres (GCs) and is the process responsible for affinity maturation of antibodies during an immune response. Previous studies have focused almost exclusively on the immune response to haptens, which may be unrepresentative of epitopes on protein antigens. In this study, we have exploited a model system that uses transgenic B and CD4+ T cells specific for hen egg lysozyme (HEL) and a chicken ovalbumin peptide, respectively, to investigate a tightly synchronized immune response to protein antigens of widely differing affinities, thus allowing us to track many facets of the development of an antibody response at the antigen-specific B cell level in an integrated system in vivo. Somatic hypermutation of immunoglobulin variable genes was analysed in clones of transgenic B cells proliferating in individual GCs in response to HEL or the cross-reactive low-affinity antigen, duck egg lysozyme (DEL). Molecular modelling of the antibody–antigen interface demonstrates that recurring mutations in the antigen-binding site, selected in GCs, enhance interactions of the antibody with DEL. The effects of these mutations on affinity maturation are demonstrated by a shift of transgenic serum antibodies towards higher affinity for DEL in DEL-cOVA immunized mice. The results show that B cells with high affinity antigen receptors can revise their specificity by somatic hypermutation and antigen selection in response to a low-affinity, cross-reactive antigen. These observations shed further light on the nature of the immune response to pathogens and autoimmunity and demonstrate the utility of this novel model for studies of the mechanisms of somatic hypermutation
Factors Affecting Trypanosome Maturation in Tsetse Flies
Trypanosoma brucei brucei infections which establish successfully in the tsetse fly midgut may subsequently mature into mammalian infective trypanosomes in the salivary glands. This maturation is not automatic and the control of these events is complex. Utilising direct in vivo feeding experiments, we report maturation of T. b. brucei infections in tsetse is regulated by antioxidants as well as environmental stimuli. Dissection of the maturation process provides opportunities to develop transmission blocking vaccines for trypanosomiasis. The present work suggests L-cysteine and/or nitric oxide are necessary for the differentiation of trypanosome midgut infections in tsetse
Dihydrodinophysistoxin-1 Produced by Dinophysis norvegica in the Gulf of Maine, USA and Its Accumulation in Shellfish
Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)−m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)−m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)−m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)−m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were \u3e0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance
Comparative Oncogenomic Analysis of Copy Number Alterations in Human and Zebrafish Tumors Enables Cancer Driver Discovery
The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs) are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs). Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.Kathy and Curt Marble Cancer Research FundArthur C. MerrillNational Institutes of Health (U.S.) (Grant CA106416)National Institutes of Health (U.S.) (Grant ROI RR020833)National Institutes of Health (U.S.) (Grant 1F32GM095213-01
Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology
Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such variation far exceeds what might be produced by sampling error alone. One possible explanation for variation among results is differences among researchers in the decisions they make regarding statistical analyses. A growing array of studies has explored this analytical variability in different fields and has found substantial variability among results despite analysts having the same data and research question. Many of these studies have been in the social sciences, but one small “many analyst” study found similar variability in ecology. We expanded the scope of this prior work by implementing a large-scale empirical exploration of the variation in effect sizes and model predictions generated by the analytical decisions of different researchers in ecology and evolutionary biology. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to compare sibling number and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass cover and tree seedling recruitment). The project leaders recruited 174 analyst teams, comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141 usable effects (compatible with our meta-analyses and with all necessary information provided) for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial heterogeneity among results for both datasets, although the patterns of variation differed between them. For the blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and even effects crossing the traditional threshold of statistical significance in the opposite direction. In contrast, the average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third of effects crossing the traditional threshold of significance in one direction or the other. However, there were also several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial variation in the variable selection and random effects structures among analyses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those analyses that found results that were close to the mean. The existence of substantial variability among analysis outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results, and how they should conduct analyses in the future
The Influence of Sex and Fly Species on the Development of Trypanosomes in Tsetse Flies
Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG), proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes
- …
