480 research outputs found

    Evidence for Narrow S=+1 Baryon Resonance in Photo-production from Neutron

    Full text link
    The gamma n -> K+ K- n reaction on 12C has been studied by measuring both K+ and K- at forward angles. A sharp baryon resonance peak was observed at 1.54 +- 0.01 GeV with a width smaller than 25 MeV and a Gaussian significance of 4.6 sigma. The strangeness quantum number (S) of the baryon resonance is +1. It can be interpreted as a molecular meson-baryon resonance or alternatively as an exotic 5-quark state (uudd{s_bar}) that decays into a K+ and a neutron. The resonance is consistent with the lowest member of an anti-decuplet of baryons predicted by the chiral soliton model.Comment: 12 pages, 3 encapsulated postscript figure

    Determination of Antioxidant and Anti-Melanogenesis Activities of Indonesian Lai, Durio kutejensis [Bombacaceae (Hassk) Becc] Fruit Extract

    Get PDF
    Purpose: To investigate the antioxidant and anti-melanogenesis activities of Durio kutejensis [Bombacaceae (Hassk.) Becc] fruit extract.Methods: The fruit flesh of D. kutejensis was extracted successively with n-hexane, ethyl acetate/EtOAc, and ethanol/EtOH at room temperature repeatedly. The extracts were concentrated in vacuo to yield their residues. Antioxidant properties were analyzed by 2,2'-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid) (ABTS, superoxide dismutase (SOD)-like activity, 2,2-diphenyl-1- picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) while anti-melanogensis activity was evaluated by tyrosinase enzyme activity and B16 melanoma cell assays (melanin inhibition and cytotoxicity).Results: The extract (200 μg/mL) showed melanin inhibition by inhibiting melanin formation in B16 melanoma cell by 47 % without cytotoxicity but did not inhibit tyrosinase enzyme activity. The extract (1 - 1000 μg/mL) also exhibited some level of antioxidant activity including ORAC (0.04 ± 0.00 μmol TE/mg at 950 μg/mL), ABTS (1.0 ± 0.2 % at 100.8 μg/mL), SOD (IC50, 76.00 ± 14.6 μg/mL, and DPPH (21.5 ± 0.7 % at 97.39 μg/mL extract concentration).Conclusion: The fruit extract of Durio kutejensis has antioxidant properties with a potential for treating hyperpigmentation and for use as a skin-lightening agent.Keywords: Durio kutejensis, Antioxidant, Anti-melanogenesis, B16 Melanoma cell Hyperpigmentation, Skin-lightening agen

    A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition

    Get PDF
    Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Antibody Repertoires in Humanized NOD-scid-IL2Rγnull Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse

    Get PDF
    Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγnull engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγnull mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential DH-JH pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors intrinsic to human B cells and are principally unaltered by differences between mouse and human stromal microenvironments

    Total 18F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour

    Get PDF
    Positron emission tomography (PET) using 6-[(18)F]fluoro-L-dihydroxyphenylalanine ((18)F-dopa) has an excellent sensitivity to detect carcinoid tumour lesions. (18)F-dopa tumour uptake and the levels of biochemical tumour markers are mediated by tumour endocrine metabolic activity. We evaluated whether total (18)F-dopa tumour uptake on PET, defined as whole-body metabolic tumour burden (WBMTB), reflects tumour load per patient, as measured with tumour markers. Seventy-seven consecutive carcinoid patients who underwent an (18)F-dopa PET scan in two previously published studies were analysed. For all tumour lesions mean standardised uptake values (SUVs) at 40% of the maximal SUV and tumour volume on (18)F-dopa PET were determined and multiplied to calculate a metabolic burden per lesion. WBMTB was the sum of the metabolic burden of all individual lesions per patient. The 24-h urinary serotonin, urine and plasma 5-hydroxindoleacetic acid (5-HIAA), catecholamines (nor)epinephrine, dopamine and their metabolites, measured in urine and plasma, and serum chromogranin A served as tumour markers. All but 1 were evaluable for WBMTB; 74 patients had metastatic disease. (18)F-dopa PET detected 979 lesions. SUV(max) on (18)F-dopa PET varied up to 29-fold between individual lesions within the same patients. WBMTB correlated with urinary serotonin (r = 0.51) and urinary and plasma 5-HIAA (r = 0.78 and 0.66). WBMTB also correlated with urinary norepinephrine, epinephrine, dopamine and plasma dopamine, but not with serum chromogranin A. Tumour load per patient measured with (18)F-dopa PET correlates with tumour markers of the serotonin and catecholamine pathway in urine and plasma in carcinoid patients, reflecting metabolic tumour activity

    Leptin and Adiponectin: new players in the field of tumor cell and leukocyte migration

    Get PDF
    Adipose tissue is no longer considered to be solely an energy storage, but exerts important endocrine functions, which are primarily mediated by a network of various soluble factors derived from fat cells, called adipocytokines. In addition to their responsibility to influence energy homeostasis, new studies have identified important pathways linking metabolism with the immune system, and demonstrating a modulatory role of adipocytokines in immune function. Additionally, epidemiological studies underline that obesity represents a significant risk factor for the development of cancer, although the exact mechanism of this relationship remains to be determined. Whereas a possible influence of adipocytokines on the proliferation of tumor cells is already known, new evidence has come to light elucidating a modulatory role of this signaling substances in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is a key feature to fight cancer cells, whereas the locomotion of tumor cells is a prerequisite for tumor formation and metastasis. We herein review the latest tumor biological findings on the role of the most prominent adipocytokines leptin and adiponectin, which are secreted by fat cells, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of adipocytokines in the regulation of migration of both leukocytes and tumor cells, and gives an insight in the underlying molecular mechanisms
    corecore