492 research outputs found

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community

    Get PDF
    Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition

    Linkage disequilibrium in young genetically isolated Dutch population

    Get PDF
    The design and feasibility of genetic studies of complex diseases are critically dependent on the extent and distribution of linkage disequilibrium (LD) across the genome and between different populations. We have examined genomewide and region-specific LD in a young genetically isolated population identified in the Netherlands by genotyping approximately 800 Short Tandem Repeat markers distributed genomewide across 58 individuals. Several regions were an

    Effects of Elevated CO2 and N Addition on Growth and N2 Fixation of a Legume Subshrub (Caragana microphylla Lam.) in Temperate Grassland in China

    Get PDF
    It is well demonstrated that the responses of plants to elevated atmospheric CO2 concentration are species-specific and dependent on environmental conditions. We investigated the responses of a subshrub legume species, Caragana microphylla Lam., to elevated CO2 and nitrogen (N) addition using open-top chambers in a semiarid temperate grassland in northern China for three years. Measured variables include leaf photosynthetic rate, shoot biomass, root biomass, symbiotic nitrogenase activity, and leaf N content. Symbiotic nitrogenase activity was determined by the C2H2 reduction method. Elevated CO2 enhanced photosynthesis and shoot biomass by 83% and 25%, respectively, and the enhancement of shoot biomass was significant only at a high N concentration. In addition, the photosynthetic capacity of C. microphylla did not show down-regulation under elevated CO2. Elevated CO2 had no significant effect on root biomass, symbiotic nitrogenase activity and leaf N content. Under elevated CO2, N addition stimulated photosynthesis and shoot biomass. By contrast, N addition strongly inhibited symbiotic nitrogenase activity and slightly increased leaf N content of C. microphylla under both CO2 levels, and had no significant effect on root biomass. The effect of elevated CO2 and N addition on C. microphylla did not show interannual variation, except for the effect of N addition on leaf N content. These results indicate that shoot growth of C. microphylla is more sensitive to elevated CO2 than is root growth. The stimulation of shoot growth of C. microphylla under elevated CO2 or N addition is not associated with changes in N2-fixation. Additionally, elevated CO2 and N addition interacted to affect shoot growth of C. microphylla with a stimulatory effect occurring only under combination of these two factors

    Analysis of Chimpanzee History Based on Genome Sequence Alignments

    Get PDF
    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated ∼1,290,000 years ago, western and other common chimpanzees ∼510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5–7 million years ago when the ancestors of humans separated from those of the chimpanzees

    Aberration-corrected electron microscopy of nanoparticles

    Get PDF
    The early history of scanning transmission electron microscopy (STEM) is reviewed as a way to frame the technical issues that make aberration correction an essential upgrade for the study of nanoparticles using STEM. The principles of aberration correction are explained, and the use of aberration-corrected microscopy in the study of nanostructures is exemplified in order to remark the features and challenges in the use of this measuring techniqu

    Allometric Scaling of the Active Hematopoietic Stem Cell Pool across Mammals

    Get PDF
    BACKGROUND: Many biological processes are characterized by allometric relations of the type Yβ€Š=β€ŠY (0) M(b) between an observable Y and body mass M, which pervade at multiple levels of organization. In what regards the hematopoietic stem cell pool, there is experimental evidence that the size of the hematopoietic stem cell pool is conserved in mammals. However, demands for blood cell formation vary across mammals and thus the size of the active stem cell compartment could vary across species. METHODOLOGY/PRINCIPLE FINDINGS: Here we investigate the allometric scaling of the hematopoietic system in a large group of mammalian species using reticulocyte counts as a marker of the active stem cell pool. Our model predicts that the total number of active stem cells, in an adult mammal, scales with body mass with the exponent ΒΎ. CONCLUSION/SIGNIFICANCE: The scaling predicted here provides an intuitive justification of the Hayflick hypothesis and supports the current view of a small active stem cell pool supported by a large, quiescent reserve. The present scaling shows excellent agreement with the available (indirect) data for smaller mammals. The small size of the active stem cell pool enhances the role of stochastic effects in the overall dynamics of the hematopoietic system

    Joint Analysis for Genome-Wide Association Studies in Family-Based Designs

    Get PDF
    In family-based data, association information can be partitioned into the between-family information and the within-family information. Based on this observation, Steen et al. (Nature Genetics. 2005, 683–691) proposed an interesting two-stage test for genome-wide association (GWA) studies under family-based designs which performs genomic screening and replication using the same data set. In the first stage, a screening test based on the between-family information is used to select markers. In the second stage, an association test based on the within-family information is used to test association at the selected markers. However, we learn from the results of case-control studies (Skol et al. Nature Genetics. 2006, 209–213) that this two-stage approach may be not optimal. In this article, we propose a novel two-stage joint analysis for GWA studies under family-based designs. For this joint analysis, we first propose a new screening test that is based on the between-family information and is robust to population stratification. This new screening test is used in the first stage to select markers. Then, a joint test that combines the between-family information and within-family information is used in the second stage to test association at the selected markers. By extensive simulation studies, we demonstrate that the joint analysis always results in increased power to detect genetic association and is robust to population stratification

    Endometrial stromal sarcoma: a population-based analysis

    Get PDF
    To determine independent prognostic factors for the survival of patients with endometrial stromal sarcoma (ESS), data were abstracted from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute from 1988 to 2003. Kaplan–Meier and Cox proportional hazards models were used for analyses. Of 831 women diagnosed with ESS, the median age was 52 years (range: 17–96 years). In total, 59.9% had stage I, 5.1% stage II, 14.9% stage III, and 20.1% had stage IV disease. Overall, 13.0, 36.1, and 34.7% presented with grades 1, 2, and 3, respectively. Patients with stage I–II vs III–IV disease had 5 years DSS of 89.3% vs 50.3% (P<0.001) and those with grades 1, 2, and 3 cancers had survivals of 91.4, 95.4, and 42.1% (P<0.001). In multivariate analysis, older patients, black race, advanced stage, higher grade, lack of primary surgery, and nodal metastasis were independent prognostic factors for poorer survival. In younger women (<50 years) with stage I–II disease, ovarian-sparing procedures did not adversely impact survival (91.9 vs 96.2%; P=0.1). Age, race, primary surgery, stage, and grade are important prognostic factors for ESS. Excellent survival in patients with grade 1 and 2 disease of all stages supports the concept that these tumors are significantly different from grade 3 tumors. Ovarian-sparing surgeries may be considered in younger patients with early-stage disease
    • …
    corecore