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The design and feasibility of genetic studies of complex diseases are critically dependent on the extent and
distribution of linkage disequilibrium (LD) across the genome and between different populations. We have
examined genomewide and region-specific LD in a young genetically isolated population identified in the
Netherlands by genotyping approximately 800 Short Tandem Repeat markers distributed genomewide
across 58 individuals. Several regions were analyzed further using a denser marker map. The permutation-
corrected measure of LD was used for analysis. A significant (Po0.0004) relation between LD and genetic
distance on a genomewide scale was found. Distance explained 4% of the total LD variation. For fine-
mapping data, distance accounted for a larger proportion of LD variation (up to 39%). A notable similarity
in the genomewide distribution of LD was revealed between this population and other young genetically
isolated populations from Micronesia and Costa Rica. Our study population and experiment was simulated
in silico to confirm our knowledge of the history of the population. High agreement was observed between
results of analysis of simulated and empirical data. We conclude that our population shows a high level of
LD similar to that demonstrated previously in other young genetic isolates. In Europe, there may be a large
number of young genetically isolated populations that are similar in history to ours. In these populations, a
similar degree of LD is expected and thus they may be effectively used for linkage or LD mapping.
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Introduction
There is an increasing interest in linkage disequilibrium

(LD) mapping. LD mapping has a potential for the precise

location of genes involved in common disease, but may

also be used to identify novel genes in genomewide scans

in population-based studies. Classical linkage analysis in

families will typically resolve the position of a novel gene to

10–20 cM, with further precise location obtained by using

LD mapping within this region.1,2 Yet under certain

conditions for complex diseases, genomewide LD studies

may have more power than linkage studies.3 The power of

these mapping techniques depends strongly on disease

allele frequencies and on the extent of disequilibrium

between marker and disease alleles.4 The latter may depend

for a large part on the age of mutations involved and on the

history of the size and structure of the population studied.

Throughout Europe, there are various genetically iso-

lated populations, founded in the 18th century with
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subsequent exponential growth. These populations are a

valuable resource for mapping genes for complex disease

because large segments of DNA are expected to be shared

identical-by-descent between carriers of a disease allele. In

young isolates, the boundary between linkage and LD

mapping becomes obscured. They may provide a researcher

with the advantage of extensive pedigree information,

which may be utilized by recently developed statistical

methods.5,6 At the same time, the connections between

people may be so remote that it makes possible effective

fine-mapping. Moreover, smaller isolates show an in-

creased degree of inbreeding that can also be exploited

for the purposes of gene mapping.7

Empirical studies have demonstrated that the decay of

LD with distance does not always follow the pattern

expected under standard population genetics models.

Compared to expectations, there are examples of too little

LD over a few kb and too much at greater distances.8 Also,

other studies have shown that the pattern of LD varies

between populations and that its distribution is irregular

across the genome.9,10

For future LD-mapping projects, it is important to know

the expected magnitude and genomewide pattern of LD

and how these may vary in different populations. LD

should therefore be described in and compared between

different populations. One issue, frequently overlooked, is

that the comparison of LD between different populations

comprises a methodological problem. Two widely used

measures of LD (D0 and P-values coming from the test of

significance of LD) are not suitable for comparison

purposes: while D0 is biased upwards with decreasing

sample size and increasing number of alleles,8,11 – 13 the

power to detect significant LD increases with sample size.

Thus, any studies reporting D0 or P-values alone cannot be

compared unless similar sample sizes and sets of markers

have been used. Recently, a method that makes D0 less

sensitive to sample size and extreme marker allele frequen-

cies was suggested and implemented in a study of LD in the

population of Palau, Micronesia.11 We have adopted this

approach and thus our results should be comparable with

these obtained in Palau. By using exact P-values from the

test for LD, our study could also be compared with other

studies that use a similar sample size.

Here, we examine the amount and decay of LD with

genetic distance in a young genetically isolated Dutch

population using approximately 800 polymorphic markers

distributed throughout the genome. In four autosomal

regions, LD is investigated in more detail using a denser

marker map in order to investigate the potential for fine-

mapping in this population. We compare the amount of

LD observed in our study with that in previous studies of

LD in young11,14 and older15,16 genetic isolates. To assess

whether the amount and decay of LD with genetic distance

observed in our study population could be explained based

on our knowledge of the history of the population, we

performed a simulation study and compared the results to

our empirical findings.

Materials and methods
Subjects

The subjects were derived from an isolated village in the

Southwest of the Netherlands (the GRIP population). The

village was founded by approximately 150 people in the

middle of the 18th century, and until the last few decades

descendants of these founders have lived in social isolation

with minimal immigration (less than 5%). From the year

1848, the population has expanded from 700 up to 20 000

inhabitants.

Two (partly overlapping) panels of subjects were

studied. To evaluate genomewide LD and LD in specific

regions of chromosome 18 and 3, data from an ongoing

study of the genetics of Type 2 diabetes were used.

Data from 58 spouses of probands were included in the

analysis. To evaluate LD at the telomeric region

of chromosome 10, we studied 88 subjects, who were

healthy controls in ongoing studies of Type 2 diabetes,

Parkinson’s and Alzheimer’s disease. All of the subjects had

genotypes available from first-degree relatives, thus allow-

ing haplotype estimation. The study was approved by the

medical ethics committee of the Erasmus Medical Center,

Rotterdam, and written consent was obtained from all

subjects.

Markers and maps

We examined 734 autosomal and 47 X-linked Short

tandem repeat (STR) markers. Four genomic regions were

subjected to further analysis using a more dense map of

STR markers: an 11.9 Mb long telomeric region on

chromosome 18p11 (15 markers), a 4.2 Mb telomeric

region on chromosome 10q26 (12 markers), a 1.6 Mb

centromeric region on chromosome 3p12 (8 markers) and

a 12 Mb middle-arm region on chromosome 3p13 (16

markers).

For the whole genome scan, the sex-average Marshfield

genetic map was used to define the order of markers and

intermarker distances.

For more densely typed regions, none of the genetic

maps currently available allowed for the establishment of

marker order and intermarker distances accurately. There-

fore, for chromosomes 18 and 10, marker order and

distances were obtained using the Celera physical map.17

For the two regions on chromosome 3, the NCBI

STS physical map was used. We estimated region-specific

genetic to physical map ratios by using genetic

and physical distances between the markers flanking a

region. For the regions 3p12, 3p13, 10q26 and 18p11,

we estimated the genetic to physical map ratio as 0.34

(deCode map), 1.76, 3.63 and 3.76 (Marshfield map)

cM/Mb, respectively. Using these estimates and assuming
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constant cM/Mb ratio across the fine-mapping regions, it is

possible to convert distance from the physical to the

genetic scale.

Models and statistical methods

For each subject used in the analysis, the haplotypes were

estimated using GeneHunter v. 2.1_r3.18 For estimating X-

linked haplotypes, X-GeneHunter-Plus19 was used. For a

few loci, marker genotypes were missing for a large

proportion of pedigree members. To minimize the influ-

ence of these loci, we dropped from the analysis any pair of

loci with fewer than 70 and 50 inferred two-locus

haplotypes for autosomes and X-linked markers, respec-

tively.

Haplotype data were subject to an analysis of pairwise

linkage disequilibrium. For all pairs of loci on the same

chromosome the multiallelic version of the D0 statistic was

calculated, namely, D0 ¼Sij pi qj|D
0
ij|, where D0

ij is Lewon-

tin’s standard measure of LD.20 Permutation analysis was

used to correct the bias occurring due to finite sample

size.8,11 – 13 Alleles were permutated at each locus indepen-

dently of alleles at other loci. Then, D0
sim was calculated as

the average of D0 over 1000 simulations. Taking the

difference between observed and mean simulated values

yielded permutation-corrected linkage disequilibrium

(D0
cp).11 – 13 It is interesting to note that the bias uncovered

by the correction was large: averaged over loci, the D0
sim

was 0.317 for the autosomes and 0.324 for the X-

chromosome. For chromosomal regions 18p11, 3p12,

3p13, and 10q26, the average bias was equal to 0.295,

0.268, 0.227 and 0.189, respectively.

The significance of LD was tested using the program

MLD, which performs a shuffling version of the exact

conditional tests for different combinations of allelic and

genotypic disequilibrium on haploid and diploid data, or

their combination.21 A total of 5000 permutations were

used to assess the P-values. D0 and D0
cp were computed

using our own software, miLD 2.0.13

A simple model, similar to that of Abecasis et al,10 was

used to study the decay of pairwise linkage disequilibrium

with time and distance:

EðD0
TÞ ¼ L þ ðH � LÞ expf�yTg ð1Þ

Here, y is recombination fraction between two loci, and T

is the number of generations since founding. To allow for

LD between unlinked loci and for incomplete LD between

tightly linked markers, two parameters are introduced into

the model: L, the minimum expected LD between markers,

and H, the maximum D0 between closely linked markers.

Model (1) is equivalent to the Malecot model9. The

model’s parameters are estimated by minimizing the sum

of squares SSQ¼Si4j (D0
ij�E[D0

ij])
2, where the sum is taken

over all N pairs of marker loci studied, and E[D0
ij] is the

expectation of LD between i and j defined by expression

(1).

The most general model (H2) is described by the set of

three parameters: {H, L, T}. Restricting L to 0 results in the

nested hypothesis H1, which assumes that LD between

unlinked markers is 0. Note, when the model is applied to

D0 corrected by permutation, L should be 0 unless a large

amount of LD is generated by genetic drift or there is

population admixture. Imposing the further restriction,

T¼0, leads to the null hypothesis H0 of independence of

LD and distance. The above hypotheses are nested, thus

the F-test can be used for comparison. It may be argued

that the F-ratio test is not appropriate because the sampling

distribution of D0 is not normal with small sample sizes

and/or a small number of different alleles at the loci

tested.22 Under these conditions, resampling techniques

may be preferred for hypothesis testing. Therefore, P-values

and 95% confidence intervals were also obtained using

2500 bootstrap samples, as described in Aulchenko et al.13

Results
Genomewide LD

In the GRIP population, the mean corrected LD for all pairs

of autosomal markers was D0
cp¼0. 005470.0004. Only

pairs of markers belonging to the same linkage group

(syntenic markers) were considered. We did not observe

extreme values of corrected LD: only for two pairs of

markers was D0
cp over 0.30. Overall, 7.57% of the

disequlibrium values were significant at a¼ 0.05. If we

partition the sample according to recombination distance

between pairs of loci, we find that a steadily declining

fraction is significant for more distant pairs of loci (Table 1,

GRIP Autosomes row). Interestingly, while the variance of

D0s in our sample was 0.00574, the variance of D0
cp was

only 0.00208. Thus, about 64% of the total variation of D0

could be explained by the fixed factors such as distribution

of allelic frequencies and sample size.

Under the unrestricted model (H2), we obtained the

maximal corrected LD of 0.057, while LD for unlinked

markers was virtually zero (�0.0002). Indeed, model H1,

restricting L to 0, did not differ significantly from H2 (both

asymptotic and empirical P40.6, Table 2) suggesting that

admixture and drift are not generating a detectable LD

between unlinked loci in our study population. The test of

LD decay with distance (H1 versus H0) was highly

significant (both Po0.0004). However, distance alone

explains only 4.4% of total variance in our data set.

As a large proportion of pairs of markers have one marker

in common, the data are correlated. To assess whether this

departure from independence may affect our results

significantly, we repeated the analysis of LD using a sample

of independent marker pairs. In all, 104 D0
cp values, used in

this analysis, were derived from pairs of adjacent markers,

with the requirement that these pairs were separated by at

least 20 cM. Each marker was involved in only one pair.

The results obtained using this sample demonstrated high
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similarity to that obtained using all pairs: the H1 hypoth-

esis is accepted, while H0 is rejected. Further, the estimates

obtained are very similar to those obtained using all pairs,

despite the fact that the sample size was over 100 times

smaller (Table 2). These results indicate that the departure

from independence is not crucial in our analysis.

To evaluate whether the pattern of disequilibrium

differed with chromosome, a separate analysis was carried

out for every chromosome. No autosome showed a

significant deviation of L from 0 and each chromosome

showed significant evidence for decay of LD with

distance (all Pr0.002), except for chromosome 21 and 22

(P¼0.14 and 0.17). Given the number of typed markers

(11 and 13, for chromosome 21 and 22, respectively), it is

likely that in these cases we did not have power to reject

the null hypothesis. Although most chromosomes gave a

consistent estimate of H (between 0.03 and 0.1) and T

(between 6 and 23), for two chromosomes a large deviation

was observed. For chromosome 2 and 13, H was estimated

as 1.0, that is, perfect LD is predicted at very short

distances. For chromosome 2, these results were mainly

determined by a single D0
cp value (D0

cp¼0.36, y¼ 0.005,

Monte-Carlo Po0.0002). Excluding this data point from

analysis led to more consistent estimates of H¼ 0.04 and

T¼10.5. For chromosome 13, H was also estimated as

unity. We did not find a single value determining the

result; rather it was determined by a set of closely linked

marker pairs (at yB0.03–0.04) demonstrating relatively

high LD.

The mean-corrected LD between 922 pairs of X-linked

markers was 0.0114 (70.002). None of the markers

demonstrated corrected LD of more than 0.3. Overall,

Table 1 Number of marker pairs, mean corrected LD7SE and percent of LD values significant (lower line) for recombination
intervals between pairs of loci

Population
Recombination Interval

o0.02 0.02–o0.05 0.05–o0.1 o0.1 0.1–o0.2 0.2–o0.3 0.3–o0.4 40.4

GRIP
Autosomes 65 393 775 1233 1705 2124 2720 3520

0.0570.008 0.03770.003 0.02470.002 0.03070.001 0.01070.001 0.00370.001 0.00070.001 0.00170.001
35.3875.98 24.6872.18 17.6871.37 20.8471.16 8.9770.69 6.4070.53 4.8270.41 5.0670.37

X-chromosomes 31 58 110 199 247 268 202 6
0.05470.014 0.03570.009 0.02170.006 0.03070.005 0.00470.004 0.00570.004 0.01270.004 �0.03070.016
25.8077.99 20.6975.37 9.0972.75 15.0872.54 6.4871.57 7.4671.61 7.9271.90 0

Palau
Autosomes F F F F F F F F

F F F 0.031 0.019 0.017 0.012 0.009
F F F 16.2 11.6 11.6 7.1 4.4

X-chromosomes F F F F F F F F
F F F 0.123 0.041 0.041 0.020 0.026
F F F 44.0 0 13.6 13.6 21.4

Data from GRIP study and Palau11 are shown.

Table 2 Modeling the decay of disequilibrium with distance, estimated for autosomes, X-chromosome and four different
genomic regions

No.
Model parameters (H1)

Variance explained
H1 vs H2 H0 vs H1

Region D0
cp H T (%) PA PB PA PB

Autosomes 11302 0.057 (0.05–0.067) 12 (10.5–13.9) 4.36 0.76 0.63 o0.0001c o1/2500
Autosomesa 104 0.069 (0.044–0.101) 15.8 (4.4–28.6) 5.72 0.9 0.56 0.014 0.004
X-chromosomesb 922 0.053 (0.028–0.090) 12.8 (5.1–28.1) 2.58 0.063 0.026b o0.0001 0.001
3p12 28 0.299 (0.160– 0.462) 200.8 (80.7–335) 39.3 0.73 0.38 0.0003 o1/2500
3p13 120 0.145 (0.043– 0.350) 63.8 (3.7–171.2) 8.16 0.23 0.11 0.002 0.015
10q26 66 0.241 (0.009– 1) 1015 (19–2292.3) 15.7 0.42 0.17 0.001 0.025
18p11 105 0.124 (0.032– 0.179) 289.5 (14.8–571.3) 7.07 0.12 0.1 0.006 0.001

The number of D0
cp values used is given in brackets. Parameter estimates (95% bootstrap confidence interval) and percent of variance explained for the

accepted hypotheses and P-value coming from F-ratio test (PA) and bootstrap (PB) are shown. P-values less than 0.05 are in bold.
aOnly adjacent marker pairs separated by at least 20 cM used.
bParameters of H2 model are (H¼0.06 (0.038–0.126), L¼0.006 (0.000–0.011), T¼19.4 (11.6–367.7)).
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8.89% of the disequlibrium values were significant. For the

X chromosome, the H1 hypothesis of no LD between

distant markers was rejected based on the empirical

estimate of P¼0.02670.003.

LD in four genomic regions, using a denser map

The results from the analysis of the four genomic regions

(chromosomes 3p12, 3p13, 10q26 and 18p11) using a

denser map are shown in Tables 2 and 3. If we partition the

sample according to physical distance, we find a steady

decline of LD (Table 3). As is the case with the whole-

genome scan, LD between distant markers is effectively

zero thus suggesting that admixture and drift are not

generating a detectable LD between unlinked loci in our

study population.

The model restricting L to 0 does not differ (all P40.1)

from the model allowing for LD between unlinked loci. At

the same time, exclusion of distance from the model (H0)

significantly decreases the fit to the data and H0 is rejected

(all Po0.01) for all four regions.

Although the same model H1 is accepted for all four

genomic regions, the extent and distribution of LD differs

(Figure 1). The largest proportion of variance explained by

distance is 39.3% for the centromeric region 3p12. The

next largest is 15.7% for the telomeric region 10q26, then

8.2% obtained for the middle-arm region 3p13 and 7.1%

for the telomeric region 18p11. The estimate of LD at small

distances (H) ranges from 0.3 (3p12) to 0.12 (18p11); the T

parameter ranges from 64 (3p13) to 1015 (10q26).

After converting distance from the physical to the

genetic scale, the estimates of T became 584.1, 36.3,

279.6 and 77 for regions 3p12, 3p13, 10q26 and 18p11,

respectively.

LD in simulated data

We simulated our study by modeling a population founded

12 generations ago by 75 spouse pairs. We chose 12

generations not by estimation from this genetic study

(which also suggested 12 generations), but rather because

from historical records it is known that GRIP was founded

approximately 250 years ago, corresponding to 10–14

generations. The number of founders was chosen based on

available historic information. The distribution of the

number of offspring was set as Poisson with an average of

three, which roughly approximates the known growth

curve for the GRIP population. The lifespan of an

individual was set to two generations. For the simulations

we have used the same marker map as in the empirical

study. Initial allelic frequencies were set to the values

found in our sample. The mutation frequency was set to

0.001. From a resulting population, we sampled randomly

88 chromosomes. All simulations were conducted by the

GENOOM program.23 The simulations were repeated 10

times. Each sample underwent analysis in a manner

replicating that for the GRIP sample. The average estimate

of parameters were {H¼0.09570.002, L¼0.00170.0002,

T¼13.870.33} with an average proportion of the variance

explained equal to 8.970.3%. Thus, the estimates of L and

T resulting from simulated data did not differ significantly

from the estimates obtained in the empirical study (Z-test,

P40.05). However, H (LD at very short distances) was

significantly (Po0.001) higher in simulated data than that

in the empirical study.

Comparison between GRIP and other populations

We compared LD in the GRIP population with LD in the

young genetically isolated populations of Palau, Micro-

nesia11 and the Central Valley of Costa Rica.14

Table 3 Number of marker pairs, mean corrected LD7SE, percent of LD values significant (Po0.05) for distances between
pairs of loci in fine-mapping regions

Interval (Mb)

Region 0–0.2 0.2–0.5 40.5–1.0 41.0–2.0 42.0–5.0 45.0

3 9 10 6 0 0
3p12 0.22870.080 0.15870.030 0.05770.030 0.04970.027 F F

100 88.9711.1 30.0715.3 33.3721.1 F F

5 3 6 19 42 45
3p13 0.16570.079 0.04870.079 0.12070.046 0.04970.018 0.01370.010 0.02670.018

60724.5 66.7733.3 50.0722.4 42.1711.6 19.076.1 8.974.3

7 6 11 14 28 0
10q26 0.06670.038 �0.00670.015 �0.00270.010 0.01270.007 0.00670.008 F

42.9720.2 0 0 0 3.673.6 F

4 5 6 21 39 30
18p11 0.09870.015 0.03770.009 0.01870.019 0.01470.010 0.01270.011 0.00270.010

50728.9 20720 16.7716.7 4.874.8 10.374.9 10.075.6
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In. the Palau study, 84 individuals were used to study LD

in autosomes and 60 males were investigated to study the

X-chromosome. The relation between corrected LD and

the recombination fraction followed a linear regression

model. Adding a quadratic term into the regression did not

improve the fit.11 In contrast, in our data we found that

adding a quadratic term improved the model significantly

(Po0.0001), while the exponential model explained the

largest proportion of variance (% of variance explained by

the linear, quadratic and exponential regression were 2.79,

4.2 and 4.4, respectively). At shorter distances between loci

(yo0.1) LD in GRIP was very close to that in Palau (Table 1).

At larger distances (y40.1), LD starts decaying more

strongly in GRIP. As the density of our marker set was

nearly twice the density used in Palau, we conclude that LD

is likely to be higher in Palau than in GRIP, especially at

longer distances (y40.1).

On the X-chromosome, LD in GRIP was much smaller

than that in Palau (see Table 1). Again, Devlin et al11 found

that adding the quadratic term in the regression model did

not improve the fit to the data, while in GRIP the quadratic

term was significant (Po0.0001), and the exponential

model gave the best fit to the data (% of variance explained

by linear and quadratic models were 1.04 and 2.52,

respectively, while H2 explained 2.9%). We found that

the distribution of LD at the X chromosome is similar to

the distribution found for the autosomes. In contrast,

Devlin et al11 found LD on the X-chromosome (mean

corrected D0 of 0.12 for yo0.1) to be four times larger than

LD for the autosomes. This has also been noted by the

authors and remains to be explained.

We also compared our results with results from the

previous genomewide evaluation of LD in a young

genetically isolated population from the Central Valley of

Costa-Rica (CVCR).14 In the CVCR study, 157 chromo-

somes, nontransmitted to individuals with bipolar dis-

order, were studied. Although this sample is slightly larger,

the power may be approximately comparable with that of

our study (116 chromosomes). From Figure 2, it can be seen

that the extent and distribution of LD is similar in GRIP

and CVCR. The significance of LD tends to be higher in

CVCR at smaller distances, which can be probably

explained by greater sample size. However, the decline

tends to be slower in GRIP, suggesting that the GRIP

effective population size is smaller.

The results of the genomewide evaluation of the

percentage of significant LD coefficients at intervals 0–

0.02y and 0.02–0.05y in GRIP (Table 1) indicate a

significant increase of LD at these distances. This is also

true for selected regions in older populations which were

subject to genetic drift (Saami, Gavoi; Table 4).15,16 In

contrast, evaluation of these regions in older isolates,

Figure 1 D0
cp versus physical distance in four genomic regions. The solid lines correspond to the expected LD under the

model of decay explained by distance.
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which underwent exponential expansion (Sardinia, Fin-

land), and in the general UK population reveals much

lower levels of LD.15,16 Additionally, LD declines very fast

in these populations (only for pairs of markers separated by

less than 0.02y are significant results found, Table 4).

Thus, at small distances (o10 cM) there is much

similarity in LD between young genetically isolated

populations (GRIP, Palau and CVCR): the percent of

significant P-values is similar between GRIP, Palau and

CVCR, and mean permutation-corrected D0 is similar

between GRIP and Palau. The drop of LD with distance is

steadier in young isolates compared to older expanding

isolates.

Discussion
We examined genomewide LD in a young genetically

isolated Dutch population and characterized in detail four

genomic regions using a dense marker map. As expected,

we found a significant (Po0.0004) relation between LD

and genetic distance. More importantly, LD was still

detectable at large distances up to 20 cM. We did not

detect LD between unlinked autosomal loci, suggesting

that admixture and drift are not generating a detectable LD

between unlinked loci in our study population.

The pattern of LD in GRIP was studied using the most

likely haplotypes for each individual as input data. These

were estimated from pedigree data using the Lander–Green

algorithm, as implemented in GeneHunter.18 Since this

method assumes absence of LD between markers, concerns

have been expressed that it may be inaccurate under some

circumstances.24 Fallin and Schork25 demonstrated that

although the EM algorithm gives good accuracy when

estimating LD between SNPs using samples of greater than

100 people, accuracy decreases with increased heterozyg-

osity and reduced sample size. Given the nature of our data

(a sample of 58 people, highly polymorphic STR markers),

the EM algorithm is not a suitable alternative method in

our case. However, given the density of the map used and

the fact that genotype data also exist for spouse and

children for most subjects in the study, pedigree-based

methods will assure good accuracy.26

The results obtained in our simulation study were close

to those obtained in our empirical study. Although the

estimates of L and T resulting from simulated data were

within the 95% confidence interval for the estimates

obtained in the empirical study, H (LD at very short

distances) was not. This indicates that LD in GRIP is less

than expected under the simple model we used for our

simulations. There are a few possible explanations for this

discordance. First, the modeled effective population size

might be less than the actual one. That is, either the

number of founders in the GRIP population was more than

Figure 2 Percentage of P-values o0.05 and o0.01
between 630 and 1012 pairs of adjacent markers in the
GRIP and CVCR populations, respectively. Distance is given
as right boundary of 1 cM – binning interval (1: all marker
pairs at o1 cM, 2: all marker pairs at o2 and Z1 cM, etc.).

Table 4 Number of marker pairs and percent of LD values significant (lower line) for recombination intervals between pairs
of loci on X-chromosome

Population No. of chromosomes
Recombination interval

o0.02 0.02–o0.05 0.05–o0.1

Saami 54 17 4 F
82.3579.53 75725 F

Gavoi 73 17 4 F
94.1275.88 75725 F

Sardinia 73 17 4 F
11.7678.05 0 F

Finland 80 26 15 8
7.6975.33 13.3379.09 0

UK 73 17 4 F
11.7678.05 0 F

Data from Saami, Gavoi, Sardinia, UK15 and Finland16 are shown.
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150, or there was higher immigration. Also possible

heterogeneity of the population’s growth parameters across

time that was not accounted for in our simulation study

may change the effective population size.

It appears from our simulation study (9% of total

variance explained by genetic distance) that on a genome-

wide scale one should not expect a large proportion of the

variance to be explained by genetic distance, given the

marker map used and the history of the population. Thus,

in our study a very large proportion of variance of LD is a

consequence of the highly stochastic nature of genetic

processes in natural populations.

The distribution of LD is highly irregular across the

genome.9,10,27 The choice of the density of a marker map to

‘catch’ a risk factor would have to take the regional

variation in LD into account as suggested by our results

for chromosome 10q26, where we see that LD is dropping

very fast compared to the other fine-mapping regions we

studied.

We also compared LD in GRIP with LD in other young

genetically isolated populations in Palau, Micronesia.11

and the Central Valley of Costa Rica.14 At smaller distances

(o10 cM) there is much similarity in LD between young

genetically isolated populations. In contrast, the drop of

LD with distance was much faster in older isolates, which

underwent exponential growth. This implies that for a

young isolate the fact of recent isolation/fast growth is far

more important than the geographical position and the

ethnic background of a population. In Europe, there are

many young genetically isolated populations that are very

similar in history to the GRIP population. In these

populations, a similar degree of LD is expected and thus

they may be effectively used for mapping genes underlying

complex diseases.
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