20 research outputs found

    Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.], the sixth most important cereal crop (after rice, wheat, maize, barley, and sorghum), is grown as a grain and stover crop by the small holder farmers in the harshest cropping environments of the arid and semiarid tropical regions of sub-Saharan Africa and South Asia. Millet is grown on ~31 million hectares globally with India in South Asia; Nigeria, Niger, Burkina Faso, and Mali in western and central Africa; and Sudan, Uganda, and Tanzania in Eastern Africa as the major producers. Pearl millet provides food and nutritional security to more than 500 million of the world’s poorest and most nutritionally insecure people. Global pearl millet production has increased over the past 15 years, primarily due to availability of improved genetics and adoption of hybrids in India and expanding area under pearl millet production in West Africa. Pearl millet production is challenged by various biotic and abiotic stresses resulting in a significant reduction in yields. The genomics research in pearl millet lagged behind because of multiple reasons in the past. However, in the recent past, several efforts were initiated in genomic research resulting into a generation of large amounts of genomic resources and information including recently published sequence of the reference genome and re-sequencing of almost 1000 lines representing the global diversity. This chapter reviews the advances made in generating the genetic and genomics resources in pearl millet and their interventions in improving the stress tolerance to improve the productivity of this very important climate-smart nutri-cereal

    Corn response to nitrogen is influenced by soil texture and weather

    Get PDF
    Citation: Tremblay, Nicolas, Yacine M. Bouroubi, Carl BĂ©lec, Robert William Mullen, Newell R. Kitchen, Wade E. Thomason, Steve Ebelhar, et al. “Corn Response to Nitrogen Is Influenced by Soil Texture and Weather.” Agronomy Journal 104, no. 6 (2012): 1658–71. https://doi.org/10.2134/agronj2012.0184.Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments to explain the sources of heterogeneity. In this study, the technique was used to examine the influence of soil and weather parameters on N responses of corn (Zea mays L.) across 51 studies involving the same N rate treatments which were carried out in a diversity of North American locations between 2006 and 2009. Results showed that corn response to added N was significantly greater in fine-textured soils than in medium-textured soils. Abundant and well-distributed rainfall and, to a lesser extent, accumulated corn heat units enhanced N response. Corn yields increased by a factor of 1.6 (over the unfertilized control) in medium-textured soils and 2.7 in fine-textured soils at high N rates. Subgroup analyses were performed on the fine-textured soil class based on weather parameters. Rainfall patterns had an important effect on N response in this soil texture class, with yields being increased 4.5-fold by in-season N fertilization under conditions of “abundant and well-distributed rainfall.” These findings could be useful for developing N fertilization algorithms that would allow for N application at optimal rates taking into account rainfall pattern and soil texture, which would lead to improved crop profitability and reduced environmental impacts

    Sustainable Weed, Disease and Pest Management in Medicinal and Aromatic Plants

    No full text
    As for all other crops, in MAPs as well, weeds, diseases and pests are important yield-reducing factors, which may severely curtain biomass production and, that is maybe more important, may affect several qualitative aspects of production. Research about this topic is generally lacking, for two main reasons: the first is that MAPs are generally grown on rather limited areas, and the incidence of specific pests and diseases rarely takes a relevance outside rather narrow boundaries. The second reason is that the economical importance of MAPs is much lower than that ascribed to the \u201cmajor\u201d crops, which the bigger efforts of research are addressed to. In the changing scenario of latter years, however, MAPs are taking an increasing relevance, and there is the necessity to draw proper guidelines for their cultivation technique, also including the advisable strategies for their sustainable protection
    corecore