166 research outputs found

    Detection of two QTL on chicken chromosome 14 for keyhole lymphet heamocyanin

    Get PDF
    A keyhole lymphet heamocyanin is an antigen which triggers Th1 type of immune response. A QTL for a primary immune response towards keyhole lymphet heamocyanin has been detected on chicken chromosome 14 in three populations. The results from the most recent population were inconsistent and varied depending on the applied QTL detection model. The major goal of the current study was the reanalysis of this data using a 2 QTL model. Additionally, in order to provide more accurate estimates of QTL effects and positions, epistasis between the QTL was considered as a potential important contributor to quantitative traits. Four statistical models were assumed: M1: A model assuming marginal additive effects of two QTL; M2: A model assuming marginal and epistatic additive effects of two QTL; M3: A model assuming marginal additive and dominance effects of two QTL; M4: A model assuming marginal additive and dominance effects of two QTL and all possible pairwise epistases. Two QTL with significant additive and dominance effects were detected on chicken chromosome 14 using model M3. One QTL was detected at 63 cM between MCW0123 and ROS0005, another at 76 cM between ROS0005 and MCW0225/NTN2Lsts1 (FDR = 0.0051). Modelling only additive effects resulted in a significantly worse fit. On the other hand, including epistatic effects did not improve fit significantly. The current study confirms previous reports of the QTL location on GGA14. A notable finding of this study is recognition of two closely related QTL for a keyhole lymphet heamocyanin response at the distal part of chicken chromosome 14

    PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis

    Get PDF
    Inhibition of phosphodiesterase type 4 (PDE4) by rolipram (4-(3-(cyclopentyloxy)-4-methoxyphenyl)-pyrrolidin-2-one) has been the focus of many behavioral and molecular studies in the recent years. Rolipram exhibits memory-enhancing effects in rodents. In vitro studies have shown that long-term potentiation (LTP), which may comprise a cellular substrate for learning, is also enhanced by rolipram. However, effects have not been assessed in vivo. Rolipram has antipsychotic properties. Psychosis affects cognition and in animal models of psychosis LTP is impaired. In this study, we investigated if PDE4 inhibition improves LTP in healthy animals in vivo and if PDE4 inhibition rescues impaired LTP and prevents object recognition memory deficits in an animal model of psychosis. Recordings were made from the hippocampus of adult, freely behaving Wistar rats. Thirty minutes after treatment with rolipram or vehicle, a tetanus was applied to the medial perforant path to elicit short-term potentiation (STP) in the dentate gyrus. At this time-point, radioimmunoassay revealed that rolipram significantly elevated cyclic adenosine monophosphate levels in the dorsal hippocampus, in line with reports by others that rolipram mediates decreased PDE4 activity. In healthy animals, both intracerebroventricular and subcutaneous treatment with rolipram facilitated STP into LTP, suggesting that PDE4 inhibition may have a permissive role in plasticity mechanisms that are relevant for learning and memory. One week after a single systemic treatment with the irreversible N-methyl--aspartate antagonist, MK801, LTP and object recognition memory were significantly impaired, but could be rescued by PDE4 inhibition. These data suggest that the relief of cognitive disturbances in psychosis models by rolipram may be mediated in part by a rescue of hippocampal LTP

    CSF tau is associated with impaired cortical plasticity, cognitive decline and astrocyte survival only in APOE4-positive Alzheimer's disease

    Get PDF
    In Alzheimer's disease (AD) patients, apopoliprotein (APOE) polymorphism is the main genetic factor associated with more aggressive clinical course. However, the interaction between cerebrospinal fluid (CSF) tau protein levels and APOE genotype has been scarcely investigated. A possible key mechanism invokes the dysfunction of synaptic plasticity. We investigated how CSF tau interacts with APOE genotype in AD patients. We firstly explored whether CSF tau levels and APOE genotype influence disease progression and long-term potentiation (LTP)-like cortical plasticity as measured by transcranial magnetic stimulation (TMS) in AD patients. Then, we incubated normal human astrocytes (NHAs) with CSF collected from sub-groups of AD patients to determine whether APOE genotype and CSF biomarkers influence astrocytes survival. LTP-like cortical plasticity differed between AD patients with apolipoprotein E4 (APOE4) and apolipoprotein E3 (APOE3) genotype. Higher CSF tau levels were associated with more impaired LTP-like cortical plasticity and faster disease progression in AD patients with APOE4 but not APOE3 genotype. Apoptotic activity was higher when cells were incubated with CSF from AD patients with APOE4 and high tau levels. CSF tau is detrimental on cortical plasticity, disease progression and astrocyte survival only when associated with APOE4 genotype. This is relevant for new therapeutic approaches targeting tau

    Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice

    Get PDF
    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS

    Role of Reuniens Nucleus Projections to the Medial Prefrontal Cortex and to the Hippocampal Pyramidal CA1 Area in Associative Learning

    Get PDF
    We studied the interactions between short- and long-term plastic changes taking place during the acquisition of a classical eyeblink conditioning and following high-frequency stimulation (HFS) of the reuniens nucleus in behaving mice. Synaptic changes in strength were studied at the reuniens-medial prefrontal cortex (mPFC) and the reuniens-CA1 synapses. Input/output curves and a paired-pulse study enabled determining the functional capabilities of the two synapses and the optimal intensities to be applied at the reuniens nucleus during classical eyeblink conditioning and for HFS applied to the reuniens nucleus. Animals were conditioned using a trace paradigm, with a tone as conditioned stimulus (CS) and an electric shock to the trigeminal nerve as unconditioned stimulus (US). A single pulse was presented to the reuniens nucleus to evoke field EPSPs (fEPSPs) in mPFC and CA1 areas during the CS-US interval. No significant changes in synaptic strength were observed at the reuniens-mPFC and reuniens-CA1 synapses during the acquisition of eyelid conditioned responses (CRs). Two successive HFS sessions carried out during the first two conditioning days decreased the percentage of CRs, without evoking any long-term potentiation (LTP) at the recording sites. HFS of the reuniens nucleus also prevented the proper acquisition of an object discrimination task. A subsequent study revealed that HFS of the reuniens nucleus evoked a significant decrease of paired-pulse facilitation. In conclusion, reuniens nucleus projections to prefrontal and hippocampal circuits seem to participate in the acquisition of associative learning through a mechanism that does not required the development of LTP

    Kuhnian revolutions in neuroscience: the role of tool development.

    Get PDF
    The terms "paradigm" and "paradigm shift" originated in "The Structure of Scientific Revolutions" by Thomas Kuhn. A paradigm can be defined as the generally accepted concepts and practices of a field, and a paradigm shift its replacement in a scientific revolution. A paradigm shift results from a crisis caused by anomalies in a paradigm that reduce its usefulness to a field. Claims of paradigm shifts and revolutions are made frequently in the neurosciences. In this article I will consider neuroscience paradigms, and the claim that new tools and techniques rather than crises have driven paradigm shifts. I will argue that tool development has played a minor role in neuroscience revolutions.The work received no fundin

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair.

    Get PDF
    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFA) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) have shown beneficial effects on learning and memory, neuroinflammatory processes and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-archidonoylglycerol (2-AG) are the most widely studied endocannabinoids, and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    • …
    corecore