133 research outputs found

    The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity

    Get PDF
    The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence suggests that OD plasticity involves N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD). Here we report that the administration of a selective LTD antagonist prevented the ocular dominance shift during the critical period. The NMDAR co-agonist D-serine facilitated adult visual cortical LTD and the OD shift in short-term monocularly deprived (MD) adult mice. When combined with reverse suture, D-serine proved effective in restoring a contralaterally-dominated visual input pattern in long-term MD mice. This work suggests LTD as a key mechanism in both juvenile and adult ocular dominance plasticity, and D-serine as a potential therapeutic in human amblyopic subjects

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Weekly cisplatin, epirubicin, and paclitaxel with granulocyte colony-stimulating factor support vs triweekly epirubicin and paclitaxel in locally advanced breast cancer: final analysis of a sicog phase III study

    Get PDF
    The present study aimed at evaluating whether a weekly cisplatin, epirubicin, and paclitaxel (PET) regimen could increase the pathological complete response (pCR) rate in comparison with a tri-weekly epirubicin and paclitaxel administration in locally advanced breast cancer (LABC) patients. Patients with stage IIIB disease were randomised to receive either 12 weekly cycles of cisplatin 30 mg m−2, epirubicin 50 mg m−2, and paclitaxel 120 mg m−2 (PET) plus granulocyte-colony stimulating factor support, or four cycles of epirubicin 90 mg m−2+paclitaxel 175 mg m−2 (ET) every 3 weeks. Overall, 200 patients (PET/ET=100/100) were included in this study. A pCR in both breast and axilla occurred in 16 (16%) PET patients and in six (6%) ET patients (P=0.02). The higher activity of PET was evident only in ER negative (27.5 vs 5.4%; P=0.026), and in HER/neu positive (31 vs 5%; P=0.037) tumours. The two arms yielded similar pCR rate in ER positive (PET/ET=7.5/7.1%) and HER/neu negative (PET/ET=10/6%) patients. At a 39 months median follow-up, 70 patients showed a progression or relapses (PET, 32 vs ET, 38). Anaemia, mucositis, peripheral neuropathy, and gastrointestinal toxicity were substantially more frequent in the PET arm. The PET weekly regimen is superior to ET in terms of pCR rate in LABC patients with ER negative and/or HER2 positive tumours Mature data in terms of disease-free and overall survival are needed to ascertain whether this approach could improve the prognosis of these subsets of LABC patients

    Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions.</p> <p>Results</p> <p>To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins.</p> <p>Conclusions</p> <p>Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via <url>http://www.cymobase.org</url>.</p

    Dynamic purine signaling and metabolism during neutrophil–endothelial interactions

    Get PDF
    During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation

    A Neuron-Glial Perspective for Computational Neuroscience

    Get PDF
    International audienceThere is growing excitement around glial cells, as compelling evidence point to new, previously unimaginable roles for these cells in information processing of the brain, with the potential to affect behavior and higher cognitive functions. Among their many possible functions, glial cells could be involved in practically every aspect of the brain physiology in health and disease. As a result, many investigators in the field welcome the notion of a Neuron-Glial paradigm of brain function, as opposed to Ramon y Cayal's more classical neuronal doctrine which identifies neurons as the prominent, if not the only, cells capable of a signaling role in the brain. The demonstration of a brain-wide Neuron-Glial paradigm however remains elusive and so does the notion of what neuron-glial interactions could be functionally relevant for the brain computational tasks. In this perspective, we present a selection of arguments inspired by available experimental and modeling studies with the aim to provide a biophysical and conceptual platform to computational neuroscience no longer as a mere prerogative of neuronal signaling but rather as the outcome of a complex interaction between neurons and glial cells

    LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues

    Get PDF
    Somatic inactivation of the serine/threonine kinase gene STK11/LKB1/PAR-4 occurs in a variety of cancers, including ∌10% of melanoma. However, how the loss of LKB1 activity facilitates melanoma invasion and metastasis remains poorly understood. In LKB1-null cells derived from an autochthonous murine model of melanoma with activated Kras and Lkb1 loss and matched reconstituted controls, we have investigated the mechanism by which LKB1 loss increases melanoma invasive motility. Using a microfluidic gradient chamber system and time-lapse microscopy, in this paper, we uncover a new function for LKB1 as a directional migration sensor of gradients of extracellular matrix (haptotaxis) but not soluble growth factor cues (chemotaxis). Systematic perturbation of known LKB1 effectors demonstrated that this response does not require canonical adenosine monophosphate-activated protein kinase (AMPK) activity but instead requires the activity of the AMPK-related microtubule affinity-regulating kinase (MARK)/PAR-1 family kinases. Inhibition of the LKB1-MARK pathway facilitated invasive motility, suggesting that loss of the ability to sense inhibitory matrix cues may promote melanoma invasion
    • 

    corecore