16 research outputs found
Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future
Effects of low phytic acid corn on phosphorus utilization, performance, and bone mineralization in broiler chicks
Effects of low phytic acid corn on phosphorus utilization, performance, and bone mineralization in broiler chicks
On in-situ visualization for strongly coupled partitioned fluid-structure interaction
We present an integrated in-situ visualization approach for partitioned multi-physics simulation of fluid-structure interaction. The simulation itself is treated as a black box and only the information at the fluid-structure interface is considered, and communicated between the fluid and solid solvers with a separate coupling tool. The visualization of the interface data is performed in conjunction with the fluid solver. Furthermore, we present new visualization techniques for the analysis of the interrelation of the two solvers , with emphasis on the involved error due to discretization in space and time and the reconstruction. Our visualization approach also enables the investigation of these errors with respect of their mutual influence on the two simulation codes and their space-time discretization. For efficient interactive visualization, we employ the concept of explorable spatiotemporal images, which also enables finite-time temporal navigation in an in-situ context. We demonstrate our overall approach and its utility by means of a fluid-structure simulation using OpenFOAM that is coupled by the preCICE software layer.Aerodynamics, Wind Energy & PropulsionAerospace Engineerin
Neutralizing antibodies to human and simian adenoviruses in humans and New-World monkeys
AbstractVaccines based on adenovirus (Ad) vectors are currently in development against several pathogens. However, neutralizing antibodies (NAb) to human adenovirus type 5 (AdHu5), the best-studied vector, are highly prevalent in humans worldwide. Less-prevalent adenoviruses, including human and simian serotypes, provide alternative vaccine platforms. In this study, sera from 200 Brazilian human subjects and New-World monkeys were tested for NAb titers to human serotypes AdHu5 and AdHu26 and chimpanzee-origin Ad viruses of serotype 6 (AdC6) and serotype 68 (AdC68). Seroprevalence rates of NAb in humans were 69.5% for AdHu5, 44% for AdHu26, 21% for AdC6 and 23.5% for AdC68. In addition, NAb titers to human Ad were consistently higher than those found to simian serotypes. Surprisingly, sera from some New-World monkey species were able to neutralize AdC6 and/or AdC68. A possible explanation for these findings and the implications for the development of Ad-vector vaccines are discussed in detail
Cloning and chromosomal assignment of the bovine interleukin-2 receptor alpha (IL-2R?) gene
A 2D-QSPR approach to predict blood-brain barrier penetration of drugs acting on the central nervous system
Drugs acting on the central nervous system (CNS) have to cross the blood-brain barrier (BBB) in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB). As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR) can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88), s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP), polar surface area (PSA), and polarizability (α). Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%). These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.<br>Fármacos que atuam no sistema nervoso central (SNC) devem atravessar a barreira hematoencefálica (BHE) para exercerem suas ações farmacológicas. A difusão passiva através da BHE pode ser parcialmente expressa pelo coeficiente de partição entre os compartimentos encefálico e sanguíneo (logBB, brain/blood partition coefficient). Considerando-se que a avaliação experimental de logBB é dispendiosa e demorada, métodos teóricos como estudos das relações entre estrutura química e propriedade (QSPR, Quantitative Structure-Property Relationships) podem ser utilizados na previsão dos valores de logBB. Neste estudo, uma abordagem de QSPR-2D foi aplicada a um conjunto de 28 moléculas com ação central, usando logBB como propriedade biológica. O melhor modelo de QSPR [n = 21, r = 0,94 (r² = 0,88), s = 0,28 e Q² = 0,82] apresentou três descritores moleculares: o coeficiente calculado de partição n-octanol/água (ClogP), área de superfície polar (PSA) e polarizabilidade (α). Seis dos sete compostos do conjunto de avaliação foram bem previstos pelo modelo, o que corresponde a um bom poder de previsão externa (85,7%). Os resultados obtidos podem auxiliar de forma relevante em estudos futuros, orientando quais descritores moleculares devem ser considerados para estimar logBB e prever a passagem através da BHE de moléculas estruturalmente relacionadas às do conjunto investigado
