590 research outputs found

    RP-LC and HPTLC Methods for the Determination of Olmesartan Medoxomil and Hydrochlorothiazide in Combined Tablet Dosage Forms

    Get PDF
    Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min−1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot−1 for olmesartan and hydrochlorothiazide, respectively

    Effect of Salt Valency and Concentration on Shear and Extensional Rheology of Aqueous Polyelectrolyte Solutions For Enhanced Oil Recovery

    Get PDF
    The injection of polymer solutions into an oil basin can lead to enhanced oil recovery (EOR) by increasing the microscopic sweep of the reservoir, improving the water-oil motility ratio, and thus leading to greater yield from oil fields. In this contribution, we characterize both shear and extensional rheological response of aqueous solutions of partially hydrolyzed polyacrylamide (HPAM), the most commonly used polymer for EOR, for velocity gradients in both the flow direction (extensional) and perpendicular to flow (shear) arise in EOR applications. As HPAM is a charged polymer, to better emulate the environment in oil basins, the rheological response was investigated in presence of salt, sodium chloride, and calcium chloride, with concentrations 3.7 × 10−4 − 1.5 M, as a function of polymer molecular weight (2–10 million g/mol) and concentration (0.005–0.3 wt%). The extensional relaxation times and extensional viscosity are measured using dripping-onto-substrate (DoS) rheometry protocols, and a commercial shear rheometer was utilized for characterizing the shear rheology response. The polyelectrolyte solutions formed by HPAM exhibit shear thinning in steady shear, but show strain hardening in response to extensional flow. Even though an increase in monovalent salt concentration leads to a decrease in both shear viscosity and extensional relaxation times, an increase in divalent salt concentration leads to an increase in extensional viscosity and relaxation time, implying that ion coordination can play a role in the presence of multivalent ions

    A fast and intuitive method for calculating dynamic network reconfiguration and node flexibility

    Get PDF
    Dynamic interactions between brain regions, either during rest or performance of cognitive tasks, have been studied extensively using a wide variance of methods. Although some of these methods allow elegant mathematical interpretations of the data, they can easily become computationally expensive or difficult to interpret and compare between subjects or groups. Here, we propose an intuitive and computationally efficient method to measure dynamic reconfiguration of brain regions, also termed flexibility. Our flexibility measure is defined in relation to an a-priori set of biologically plausible brain modules (or networks) and does not rely on a stochastic data-driven module estimation, which, in turn, minimizes computational burden. The change of affiliation of brain regions over time with respect to these a-priori template modules is used as an indicator of brain network flexibility. We demonstrate that our proposed method yields highly similar patterns of whole-brain network reconfiguration (i.e., flexibility) during a working memory task as compared to a previous study that uses a data-driven, but computationally more expensive method. This result illustrates that the use of a fixed modular framework allows for valid, yet more efficient estimation of whole-brain flexibility, while the method additionally supports more fine-grained (e.g. node and group of nodes scale) flexibility analyses restricted to biologically plausible brain networks.</p

    Progress and Poverty—1965 Version

    Get PDF
    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e. g. for the European XFEL, which is expected to produce 100 million pulses per hour. (C)2014 Optical Society of Americ

    Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains

    Get PDF
    Recently, 125 loci with genome-wide support for association with schizophrenia were identified. We investigated the impact of these variants and their accumulated genetic risk on brain activation in five neurocognitive domains of the Research Domain Criteria (working memory, reward processing, episodic memory, social cognition and emotion processing). In 578 healthy subjects we tested for association (i) of a polygenic risk profile score (RPS) including all single-nucleotide polymorphisms (SNPs) reaching genome-wide significance in the recent genome-wide association studies (GWAS) meta-analysis and (ii) of all independent genome-wide significant loci separately that showed sufficient distribution of all allelic groups in our sample (105 SNPs). The RPS was nominally associated with perigenual anterior cingulate and posterior cingulate/precuneus activation during episodic memory (PFWE(ROI)=0.047) and social cognition (PFWE(ROI)=0.025), respectively. Single SNP analyses revealed that rs9607782, located near EP300, was significantly associated with amygdala recruitment during emotion processing (PFWE(ROI)=1.63 × 10−4, surpassing Bonferroni correction for the number of SNPs). Importantly, this association was replicable in an independent sample (N=150; PFWE(ROI)<0.025). Other SNP effects previously associated with imaging phenotypes were nominally significant, but did not withstand correction for the number of SNPs tested. To assess whether there was true signal within our data, we repeated single SNP analyses with 105 randomly chosen non-schizophrenia-associated variants, observing fewer significant results and lower association probabilities. Applying stringent methodological procedures, we found preliminary evidence for the notion that genetic risk for schizophrenia conferred by rs9607782 may be mediated by amygdala function. We critically evaluate the potential caveats of the methodological approaches employed and offer suggestions for future studies

    Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs

    Get PDF
    Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    New aerodynamic lens injector for single particle diffractive imaging

    Get PDF
    An aerodynamic lens injector was developed specifically for the needs of single-particle diffractive imaging experiments at free-electron lasers. Its design allows for quick changes of injector geometries and focusing properties in order to optimize injection for specific individual samples. Here, we present results of its first use at the FLASH free-electron-laser facility. Recorded diffraction patterns of polystyrene spheres are modeled using Mie scattering, which allowed for the characterization of the particle beam under diffractive-imaging conditions and yield good agreement with particle-trajectory simulations
    • …
    corecore