205 research outputs found

    A cytoplasm-specific activity encoded by the Trithorax-like ATX1 gene

    Get PDF
    Eukaryotes produce multiple products from a single gene locus by alternative splicing, translation or promoter usage as mechanisms expanding the complexity of their proteome. Trithorax proteins, including the Arabidopsis Trithorax-like protein ATX1, are histone modifiers regulating gene activity. Here, we report that a novel member of the Trithorax family has a role unrelated to chromatin. It is encoded from an internal promoter in the ATX1 locus as an isoform containing only the SET domain (soloSET). It is located exclusively in the cytoplasm and its substrate is the elongation factor 1A (EF1A). Loss of SET, but not of the histone modifying ATX1-SET activity, affects cytoskeletal actin bundling illustrating that the two isoforms have distinct functions in Arabidopsis cells

    AML risk stratification models utilizing ELN-2017 guidelines and additional prognostic factors: a SWOG report.

    Get PDF
    Background: The recently updated European LeukemiaNet risk stratification guidelines combine cytogenetic abnormalities and genetic mutations to provide the means to triage patients with acute myeloid leukemia for optimal therapies. Despite the identification of many prognostic factors, relatively few have made their way into clinical practice. Methods: In order to assess and improve the performance of the European LeukemiaNet guidelines, we developed novel prognostic models using the biomarkers from the guidelines, age, performance status and select transcript biomarkers. The models were developed separately for mononuclear cells and viable leukemic blasts from previously untreated acute myeloid leukemia patients (discovery cohort, Results: Models using European LeukemiaNet guidelines were significantly associated with clinical outcomes and, therefore, utilized as a baseline for comparisons. Models incorporating age and expression of select transcripts with biomarkers from European LeukemiaNet guidelines demonstrated higher area under the curve and C-statistics but did not show a substantial improvement in performance in the validation cohort. Subset analyses demonstrated that models using only the European LeukemiaNet guidelines were a better fit for younger patients (age \u3c 55) than for older patients. Models integrating age and European LeukemiaNet guidelines visually showed more separation between risk groups in older patients. Models excluding results for Conclusions: While European LeukemiaNet guidelines remain a critical tool for triaging patients with acute myeloid leukemia, the findings illustrate the need for additional prognostic factors, including age, to improve risk stratification

    Bright light-emitting diodes based on organometal halide perovskite.

    Get PDF
    Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.This is the author accepted manuscript and will be under embargo until 3/2/15. The final version is published in Nature Nanotechnology: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2014.149.html

    Women, literacy and health: comparing health and education sectoral approaches in Nepal

    Get PDF
    Functional adult literacy interventions have been regarded for many decades by policy makers as an effective way of imparting health knowledge. Supported by research on the statistical relationships between women’s literacy rates and health indicators, this dominant policy discourse is based on assumptions that non-literate women lack understanding and confidence, and that formal programmes and institutions constitute the main sites of learning. Proposing a broader conceptualisation of literacy as a social practice and of health as connected with social justice, this article draws on policy analysis and the authors’ earlier research in Nepal to re-examine the relationship between gender, literacy and health. By comparing health and literacy approaches used within the education and health sectors and taking account of new and indigenous informal learning practices, the article points to ways of investigating the complex interaction of factors that influence inequalities in gender and health at community level

    Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis

    Get PDF
    Purpose: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. Methods: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. Results: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. Conclusion: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis

    Suture-based vs. pure plug-based vascular closure devices for VA-ECMO decannulation–A retrospective observational study

    Get PDF
    BackgroundVeno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a valuable treatment option for patients in cardiogenic shock, but complications during decannulation may worsen the overall outcome. Therefore, the aim of this study was to compare the efficacy and safety of suture-based to pure plug-based vascular closure devices for VA-ECMO decannulation.MethodsIn this retrospective study, the procedural outcome of 33 patients with suture-based Perclose ProGlide closure devices was compared to 38 patients with MANTA plug-based closure devices.ResultsRate of technically correct placement of closure devices was 88% in the suture-based group and 97% in the plug-based group (p = 0.27). There was a significant reduction of severe bleeding events during VA-ECMO decannulation in plug-based versus suture-based systems (3% vs. 21%, p = 0.04). Ischemic complications occurred in 6% with suture-based and 5% with plug-based device (p = 1.00). Pseudoaneurysm formation was detected in 3% in both groups (p = 1.00). No switch to vascular surgery due to bleeding after decannulation was necessary in both groups.ConclusionBased on our retrospective analysis, we propose that plug-based vascular closure should be the preferred option for VA-ECMO decannulation. This hypothesis should be further tested in a randomized trial

    Assessing the digenic model in rare disorders using population sequencing data

    Get PDF
    An important fraction of patients with rare disorders remains with no clear genetic diagnostic, even after whole-exome or whole-genome sequencing, posing a difficulty in giving adequate treatment and genetic counseling. The analysis of genomic data in rare disorders mostly considers the presence of single gene variants in coding regions that follow a concrete monogenic mode of inheritance. A digenic inheritance, with variants in two functionally-related genes in the same individual, is a plausible alternative that might explain the genetic basis of the disease in some cases. In this case, digenic disease combinations should be absent or underrepresented in healthy individuals. We develop a framework to evaluate the significance of digenic combinations and test its statistical power in different scenarios. We suggest that this approach will be relevant with the advent of new sequencing efforts including hundreds of thousands of samples
    corecore