29 research outputs found

    Stochastic and Regulatory Role of Chromatin Silencing in Genomic Response to Environmental Changes

    Get PDF
    Phenotypic diversity and fidelity can be balanced by controlling stochastic molecular mechanisms. Epigenetic silencing is one that has a critical role in stress response. Here we show that in yeast, incomplete silencing increases stochastic noise in gene expression, probably owing to unstable chromatin structure. Telomere position effect is suggested as one mechanism. Expression diversity in a population achieved in this way may render a subset of cells to readily respond to various acute stresses. By contrast, strong silencing tends to suppress noisy expression of genes, in particular those involved in life cycle control. In this regime, chromatin may act as a noise filter for precisely regulated responses to environmental signals that induce huge phenotypic changes such as a cell fate transition. These results propose modulation of chromatin stability as an important determinant of environmental adaptation and cellular differentiation

    Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

    Get PDF
    Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP–based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance

    Management of intra-abdominal infections : recommendations by the WSES 2016 consensus conference

    Get PDF
    This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.Peer reviewe

    Colorimetry

    No full text

    Host and Environmental Influences on Development of Disease

    No full text
    While many myxozoan parasites produce asymptomatic infections in fish hosts, several species cause diseases whose patterns of prevalence and pathogenicity are highly dependent on host and environmental factors. This chapter reviews how these factors influence pathogenicity and disease prevalence. Influential host factors include age, size and nutritional state. There is also strong evidence for host strains that vary in resistance to infection and that there is a genetic basis for resistance. A lack of co-evolutionary processes appears to generally underly the devastating impacts of diseases caused by myxozoans when introduced fish are exposed to novel parasites (e.g. PKD in rainbow trout in Europe) or when native fish are exposed to an introduced parasite (e.g. whirling disease in North America). Most available information on abiotic factors relates to water temperature, which has been shown to play a crucial role in several host parasite systems (e.g. whirling disease, PKD) and is therefore of concern in view of global warming, fish health and food sustainability. Eutrophication may also influence disease development. Abiotic factors may also drive fish disease via their impact on parasite development in invertebrate hosts
    corecore