58 research outputs found

    Differences in the fatty-acid composition of rodent spermatozoa are associated to levels of sperm competition.

    Get PDF
    Sperm competition is a prevalent phenomenon that drives the evolution of sperm function. High levels of sperm competition lead to increased metabolism to fuel higher sperm velocities. This enhanced metabolism can result in oxidative damage (including lipid peroxidation) and damage to the membrane. We hypothesized that in those species experiencing high levels of sperm competition there are changes in the fatty-acid composition of the sperm membrane that makes the membrane more resistant to oxidative damage. Given that polyunsaturated fatty acids (PUFAs) are the most prone to lipid peroxidation, we predicted that higher sperm competition leads to a reduction in the proportion of sperm PUFAs. In contrast, we predicted that levels of sperm competition should not affect the proportion of PUFAs in somatic cells. To test these predictions, we quantified the fatty-acid composition of sperm, testis and liver cells in four mouse species (genus Mus) that differ in their levels of sperm competition. Fatty-acid composition in testis and liver cells was not associated to sperm competition levels. However, in sperm cells, as predicted, an increase in sperm competition levels was associated with an increase in the proportion of saturated fatty-acids (the most resistant to lipid peroxidation) and by a concomitant decrease in the proportion of PUFAs. Two particular fatty acids were most responsible for this pattern (arachidonic acid and palmitic acid). Our findings thus indicate that sperm competition has a pervasive influence in the composition of sperm cells that ultimately may have important effects in sperm function

    Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

    Get PDF
    Background In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. Methods The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. Results The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. Conclusions These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement

    Light regulation of metabolic pathways in fungi

    Get PDF
    Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes

    Metal-Substituted Microporous Aluminophosphates

    Get PDF
    This chapter aims to present the zeotypes aluminophosphates (AlPOs) as a complementary alternative to zeolites in the isomorphic incorporation of metal ions within all-inorganic microporous frameworks as well as to discuss didactically the catalytic consequences derived from the distinctive features of both frameworks. It does not intend to be a compilation of either all or the most significant publications involving metal-substituted microporous aluminophosphates. Families of AlPOs and zeolites, which include metal ion-substituted variants, are the dominant microporous materials. Both these systems are widely used as catalysts, in particular through aliovalent metal ions substitution. Here, some general description of the synthesis procedures and characterization techniques of the MeAPOs (metal-contained aluminophosphates) is given along with catalytic properties. Next, some illustrative examples of the catalytic possibilities of MeAPOs as catalysts in the transformation of the organic molecules are given. The oxidation of the hardly activated hydrocarbons has probably been the most successful use of AlPOs doped with the divalent transition metal ions Co2+, Mn2+, and Fe2+, whose incorporation in zeolites is disfavoured. The catalytic role of these MeAPOs is rationalized based on the knowledge acquired from a combination of the most advanced characterization techniques. Finally, the importance of the high specificity of the structure-directing agents employed in the preparation of MeAPOs is discussed taking N,N-methyldicyclohexylamine in the synthesis of AFI-structured materials as a driving force. It is shown how such a high specificity could be predicted and how it can open great possibilities in the control of parameters as critical in catalysis as crystal size, inter-and intracrystalline mesoporosity, acidity, redox properties, incorporation of a great variety of heteroatom ions or final environment of the metal site (surrounding it by either P or Al)

    Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering

    Get PDF
    Crocus sativus is the source of saffron spice, the processed stigma which accumulates glucosylated apocarotenoids known as crocins. Crocins are found in the stigmas of other Crocuses, determining the colourations observed from pale yellow to dark red. By contrast, tepals in Crocus species display a wider diversity of colours which range from purple, blue, yellow to white. In this study, we investigated whether the contribution of crocins to colour extends from stigmas to the tepals of yellow Crocus species. Tepals from seven species were analysed by UPLC-PDA and ESI-Q-TOF-MS/MS revealing for the first time the presence of highly glucosylated crocins in this tissue. beta-carotene was found to be the precursor of these crocins and some of them were found to contain rhamnose, never before reported. When crocin profiles from tepals were compared with those from stigmas, clear differences were found, including the presence of new apocarotenoids in stigmas. Furthermore, each species showed a characteristic profile which was not correlated with the phylogenetic relationship among species. While gene expression analysis in tepals of genes involved in carotenoid metabolism showed that phytoene synthase was a key enzyme in apocarotenoid biosynthesis in tepals. Expression of a crocetin glucosyltransferase, previously identified in saffron, was detected in all the samples. The presence of crocins in tepals is compatible with the role of chromophores to attract pollinators. The identification of tepals as new sources of crocins is of special interest given their wide range of applications in medicine, cosmetics and colouring industries.The laboratory is supported by the Spanish Ministerio de Ciencia e Innovacion (BIO2009-07803) and participates in the IBERCAROT network (112RT0445). Dr. Ahrazem was funded by FPCYTA through the INCRECYT Programme. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Rubio-Moraga, A.; Ahrazem, O.; Rambla Nebot, JL.; Granell Richart, A.; Gómez Gómez, L. (2013). Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering. PLoS ONE. 8(9):71946-71946. https://doi.org/10.1371/journal.pone.0071946S719467194689Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005AKIYAMA, K. (2007). Chemical Identification and Functional Analysis of Apocarotenoids Involved in the Development of Arbuscular Mycorrhizal Symbiosis. Bioscience, Biotechnology, and Biochemistry, 71(6), 1405-1414. doi:10.1271/bbb.70023Lendzemo, V. W., Kuyper, T. W., Matusova, R., Bouwmeester, H. J., & Ast, A. V. (2007). Colonization by Arbuscular Mycorrhizal Fungi of Sorghum Leads to Reduced Germination and Subsequent Attachment and Emergence ofStriga hermonthica. Plant Signaling & Behavior, 2(1), 58-62. doi:10.4161/psb.2.1.3884Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J.-P., … Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194. doi:10.1038/nature07271Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., … Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200. doi:10.1038/nature07272Jella, P., Rouseff, R., Goodner, K., & Widmer, W. (1998). Determination of Key Flavor Components in Methylene Chloride Extracts from Processed Grapefruit Juice. Journal of Agricultural and Food Chemistry, 46(1), 242-247. doi:10.1021/jf9702149Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039-1042. doi:10.1016/s0031-9422(00)82412-7Bathaie, S. Z., & Mousavi, S. Z. (2010). New Applications and Mechanisms of Action of Saffron and its Important Ingredients. Critical Reviews in Food Science and Nutrition, 50(8), 761-786. doi:10.1080/10408390902773003Abdullaev, F. I., & Espinosa-Aguirre, J. J. (2004). Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and Prevention, 28(6), 426-432. doi:10.1016/j.cdp.2004.09.002Zhang Z, Wang CZ, Wen XD, Shoyama Y, Yuan CS (2013) Role of saffron and its constituents on cancer chemoprevention. Pharm Biol.Schmidt, M., Betti, G., & Hensel, A. (2007). Saffron in phytotherapy: Pharmacology and clinical uses. Wiener Medizinische Wochenschrift, 157(13-14), 315-319. doi:10.1007/s10354-007-0428-4Howes, M.-J. R., & Perry, E. (2011). The Role of Phytochemicals in the Treatment and Prevention of Dementia. Drugs & Aging, 28(6), 439-468. doi:10.2165/11591310-000000000-00000Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022Rubio-Moraga, A., Trapero, A., Ahrazem, O., & Gómez-Gómez, L. (2010). Crocins transport in Crocus sativus: The long road from a senescent stigma to a newborn corm. Phytochemistry, 71(13), 1506-1513. doi:10.1016/j.phytochem.2010.05.026Moraga, A. R., Nohales, P. F., P�rez, J. A. F., & G�mez-G�mez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219(6), 955-966. doi:10.1007/s00425-004-1299-1Harpke, D., Meng, S., Rutten, T., Kerndorff, H., & Blattner, F. R. (2013). Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: Ancient hybridization and chromosome number evolution. Molecular Phylogenetics and Evolution, 66(3), 617-627. doi:10.1016/j.ympev.2012.10.007Mathew B (1982) The crocus - A revision of the Genus crocus; Batsford B, editor. London.Nørbæk, R., Nielsen, K., & Kondo, T. (2002). Anthocyanins from flowers of Cichorium intybus. Phytochemistry, 60(4), 357-359. doi:10.1016/s0031-9422(02)00055-9Zhu, C., Bai, C., Sanahuja, G., Yuan, D., Farré, G., Naqvi, S., … Christou, P. (2010). The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics, 504(1), 132-141. doi:10.1016/j.abb.2010.07.028OHMIYA, A. (2011). Diversity of Carotenoid Composition in Flower Petals. Japan Agricultural Research Quarterly: JARQ, 45(2), 163-171. doi:10.6090/jarq.45.163KISHIMOTO, S., MAOKA, T., SUMITOMO, K., & OHMIYA, A. (2005). Analysis of Carotenoid Composition in Petals of Calendula (Calendula officinalisL.). Bioscience, Biotechnology, and Biochemistry, 69(11), 2122-2128. doi:10.1271/bbb.69.2122Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology, 142(3), 1193-1201. doi:10.1104/pp.106.087130Ohmiya, A., Sumitomo, K., & Aida, R. (2009). «Yellow Jimba»: Suppression of Carotenoid Cleavage Dioxygenase (CmCCD4a) Expression Turns White Chrysanthemum Petals Yellow. Journal of the Japanese Society for Horticultural Science, 78(4), 450-455. doi:10.2503/jjshs1.78.450Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., … Taylor, M. A. (2010). The Metabolic and Developmental Roles of Carotenoid Cleavage Dioxygenase4 from Potato. Plant Physiology, 154(2), 656-664. doi:10.1104/pp.110.158733Ahrazem, O., Rubio-Moraga, A., Lopez, R. C., & Gomez-Gomez, L. (2009). The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. Journal of Experimental Botany, 61(1), 105-119. doi:10.1093/jxb/erp283Ahrazem, O., Rubio-Moraga, A., Trapero, A., & Gomez-Gomez, L. (2011). Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. Journal of Experimental Botany, 63(2), 681-694. doi:10.1093/jxb/err293Moraga, Á., Mozos, A., Ahrazem, O., & Gómez-Gómez, L. (2009). Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. BMC Plant Biology, 9(1), 109. doi:10.1186/1471-2229-9-109Tarantilis, P. A., Tsoupras, G., & Polissiou, M. (1995). Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A, 699(1-2), 107-118. doi:10.1016/0021-9673(95)00044-nWalter, M. H., Fester, T., & Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the «yellow pigment» and other apocarotenoids. The Plant Journal, 21(6), 571-578. doi:10.1046/j.1365-313x.2000.00708.xGómez-Miranda, B., Rupérez, P., & Leal, J. A. (1981). Changes in chemical composition during germination ofbotrytis cinerea sclerotia. Current Microbiology, 6(4), 243-246. doi:10.1007/bf01566981Cooper, C. M., Davies, N. W., & Menary, R. C. (2003). C-27 Apocarotenoids in the Flowers ofBoronia megastigma(Nees). Journal of Agricultural and Food Chemistry, 51(8), 2384-2389. doi:10.1021/jf026007cFloss, D. S., Schliemann, W., Schmidt, J., Strack, D., & Walter, M. H. (2008). RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1. Plant Physiology, 148(3), 1267-1282. doi:10.1104/pp.108.125062Fester, T., Schmidt, D., Lohse, S., Walter, M., Giuliano, G., Bramley, P., … Strack, D. (2002). Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta, 216(1), 148-154. doi:10.1007/s00425-002-0917-zKlingner, A., Bothe, H., Wray, V., & Marner, F.-J. (1995). Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry, 38(1), 53-55. doi:10.1016/0031-9422(94)00538-5Rychener, M., Bigler, P., & Pfander, H. (1984). Isolierung und Strukturaufkl�rung von Neapolitanose (O-?-D-Glucopyranosyl-(1?2)-O-[?-D-glucopyranosyl-(1?6)]-(D-glucose), einem neuen Trisaccharid aus den Stempeln von Gartenkrokussen (Crocus neapolitanus var.). Helvetica Chimica Acta, 67(2), 386-391. doi:10.1002/hlca.19840670205Lu, S., Van Eck, J., Zhou, X., Lopez, A. B., O’Halloran, D. M., Cosman, K. M., … Li, L. (2006). The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of β-Carotene Accumulation. The Plant Cell, 18(12), 3594-3605. doi:10.1105/tpc.106.046417Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & Gómez-Gómez, L. (2008). Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases fromCrocus sativusAre Both Involved in β-Ionone Release. Journal of Biological Chemistry, 283(36), 24816-24825. doi:10.1074/jbc.m804000200Dufresne, C., Cormier, F., & Dorion, S. (1997). In VitroFormation of Crocetin Glucosyl Esters byCrocus sativusCallus Extract. Planta Medica, 63(02), 150-153. doi:10.1055/s-2006-957633Wakelin, A. M., Lister, C. E., & Conner, A. J. (2003). Inheritance and Biochemistry of Pollen Pigmentation in California Poppy (Eschscholzia californica Cham.). International Journal of Plant Sciences, 164(6), 867-875. doi:10.1086/378825Cooper, C. M., Davies, N. W., & Menary, R. C. (2009). Changes in Some Carotenoids and Apocarotenoids during Flower Development in Boronia megastigma (Nees). Journal of Agricultural and Food Chemistry, 57(4), 1513-1520. doi:10.1021/jf802610pPfister, S., Meyer, P., Steck, A., & Pfander, H. (1996). Isolation and Structure Elucidation of Carotenoid−Glycosyl Esters in Gardenia Fruits (Gardenia jasminoidesEllis) and Saffron (CrocussativusLinne). Journal of Agricultural and Food Chemistry, 44(9), 2612-2615. doi:10.1021/jf950713eDufresne, C., Cormier, F., Dorion, S., Niggli, U. A., Pfister, S., & Pfander, H. (1999). Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzyme and Microbial Technology, 24(8-9), 453-462. doi:10.1016/s0141-0229(98)00143-4Lundmark, M., Hurry, V., & Lapointe, L. (2009). Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development. Journal of Experimental Botany, 60(7), 2203-2213. doi:10.1093/jxb/erp103Schliemann, W., Schmidt, J., Nimtz, M., Wray, V., Fester, T., & Strack, D. (2006). Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum. Phytochemistry, 67(12), 1196-1205. doi:10.1016/j.phytochem.2006.05.005Gómez-Gómez L, Moraga-Rubio A, Ahrazem O (2010) Understanding Carotenoid Metabolism in Saffron Stigmas: Unravelling Aroma and Colour Formation. In: Teixeira da Silva JA, editor. Functional Plant Science adn Biotechnology United Kingdon: GLOBAL SCIENCE BOOKS. pp.56–63.Schwartz, S. H., Qin, X., & Zeevaart, J. A. D. (2001). Characterization of a Novel Carotenoid Cleavage Dioxygenase from Plants. Journal of Biological Chemistry, 276(27), 25208-25211. doi:10.1074/jbc.m102146200Ilg, A., Yu, Q., Schaub, P., Beyer, P., & Al-Babili, S. (2010). Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta, 232(3), 691-699. doi:10.1007/s00425-010-1205-yAlmeida, E. R. A., & Cerdá-Olmedo, E. (2008). Gene expression in the regulation of carotene biosynthesis in Phycomyces. Current Genetics, 53(3), 129-137. doi:10.1007/s00294-007-0170-xKachanovsky, D. E., Filler, S., Isaacson, T., & Hirschberg, J. (2012). Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proceedings of the National Academy of Sciences, 109(46), 19021-19026. doi:10.1073/pnas.1214808109Walter, M. H., Floss, D. S., & Strack, D. (2010). Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta, 232(1), 1-17. doi:10.1007/s00425-010-1156-3GIACCIO, M. (2004). Crocetin from Saffron: An Active Component of an Ancient Spice. Critical Reviews in Food Science and Nutrition, 44(3), 155-172. doi:10.1080/10408690490441433Hosseinzadeh, H., & Nassiri-Asl, M. (2012). Avicenna’s (Ibn Sina) the Canon of Medicine and Saffron (Crocus sativus): A Review. Phytotherapy Research, 27(4), 475-483. doi:10.1002/ptr.4784Ochiai, T., Shimeno, H., Mishima, K., Iwasaki, K., Fujiwara, M., Tanaka, H., … Soeda, S. (2007). Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(4), 578-584. doi:10.1016/j.bbagen.2006.11.01

    Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology

    Get PDF
    Biomedical science is rapidly developing in terms of more transparency, openness and reproducibility of scientific publications. This is even more important for all studies that are based on results from basic semen examination. Recently two concordant documents have been published: the 6th edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, and the International Standard ISO 23162:2021. With these tools, we propose that authors should be instructed to follow these laboratory methods in order to publish studies in peer-reviewed journals, preferable by using a checklist as suggested in an Appendix to this article
    corecore