1,553 research outputs found

    Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia

    Full text link
    © Copyright © 2019 Wyrsch, Reid, DeMaere, Liu, Chapman, Roy Chowdhury and Djordjevic. IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:- that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26

    Porcine commensal escherichia coli: A reservoir for class 1 integrons associated with IS26

    Full text link
    © 2017 The Authors. Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulenceassociated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97% (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98% (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry

    Manganite charge and orbitally ordered and disordered states probed by Fe substitution into Mn site in LnBaMn1.96Fe0.04O5, LnBaMn1.96Fe0.04O6 and LnBaMn1.96Fe0.04O5.5 (Ln=Y, Gd, Sm, Nd, Pr, La)

    Full text link
    The layered manganese oxides LnBaMn1.96Fe0.04Oy (Ln=Y, Gd, Sm, Nd, Pr, La) have been synthesized for y=5, 5.5 and 6. In the oxygen-saturated state (y=6) they exhibit the charge and orbital order at ambient temperature for Ln=Y, Gd, Sm, but unordered eg-electronic system for Ln=La,Pr,Nd. Fourfold increase of quadrupole splitting was observed owing to the charge and orbital ordering. This is in agreement with the jumplike increase in distortion of the reduced perovskite-like cell for the charge and orbitally ordered manganites compared to the unordered ones. Substitution of 2 percents of Mn by Fe suppresses the temperatures of structural and magnetic transitions by 20 to 50 K. Parameters of the crystal lattices and the room-temperature M\"{o}ssbauer spectra were studied on forty samples whose structures were refined within five symmetry groups: P4/mmm, P4/nmm, Pm-3m, Icma and P2/m. Overwhelming majority of the Fe species are undifferentiated in the M\"{o}ssbauer spectra for most of the samples. Such the single-component spectra in the two-site structures are explained by the preference of Fe towards the site of Mn(III) and by the segmentation of the charge and orbitally ordered domains.Comment: 8 figures; figures 2 and 3 were revise

    Oxygen and Cation Ordered Perovskite, Ba2Y2Mn4O11

    Full text link
    A three-step route has been developed for the synthesis of a new oxygen-ordered double perovskite, BaYMn2O5.5 or Ba2Y2Mn4O11. (i) The A-site cation ordered perovskite, BaYMn2O5+d, is first synthesized at d ~ 0 by an oxygen-getter-controlled low-O2-pressure encapsulation technique utilizing FeO as the getter for excess oxygen. (ii) The as-synthesized, oxygen-deficient BaYMn2O5.0 phase is then readily oxygenated to the d ~ 1 level by means of 1-atm-O2 annealing at low temperatures. (iii) By annealing this fully-oxygenated BaYMn2O6.0 in flowing N2 gas at moderate temperatures the new intermediate-oxygen-content oxide, BaYMn2O5.5 or Ba2Y2Mn4O11, is finally obtained. From thermogravimetric observation it is seen that the final oxygen depletion from d ~ 1.0 to 0.5 occurs in a single sharp step about 600 C, implying that the oxygen stoichiometry of BaYMn2O5+d is not continuously tunable within 0.5 < d < 1.0. For BaYMn2O5.5 synchrotron x-ray diffraction analysis reveals an orthorhombic crystal lattice and a long-range ordering of the excess oxygen atoms in the YO0.5 layer. The magnetic behavior of BaYMn2O5.5 (with a ferromagnetic transition at ~ 133 K) is found different from those previously reported for the known phases, BaYMn2O5.0 and BaYMn2O6.0.Comment: 21 pages, 6 figures, to appear in J. Solid State Che

    The Non-Canonical CTD of RNAP-II Is Essential for Productive RNA Synthesis in Trypanosoma brucei

    Get PDF
    The carboxy-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II (RNAP-II) is essential for gene expression in metazoa and yeast. The canonical CTD is characterized by heptapeptide repeats. Differential phosphorylation of canonical CTD orchestrates transcriptional and co-transcriptional maturation of mRNA and snRNA. Many organisms, including trypanosomes, lack a canonical CTD. In these organisms, the CTD is called a non-canonical CTD or pseudo-CTD (ΨCTD. In the African trypanosome, Trypanosoma brucei, the ΨCTD is ∼285 amino acids long, rich in serines and prolines, and phosphorylated. We report that T. brucei RNAP-II lacking the entire ΨCTD or containing only a 95-amino-acid-long ΨCTD failed to support cell viability. In contrast, RNAP-II with a 186-amino-acid-long ΨCTD maintained cellular growth. RNAP-II with ΨCTD truncations resulted in abortive initiation of transcription. These data establish that non-canonical CTDs play an important role in gene expression

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Get PDF
    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology

    Ca2+ Regulates the Drosophila Stoned-A and Stoned-B Proteins Interaction with the C2B Domain of Synaptotagmin-1

    Get PDF
    The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca2+. The Ca2+-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca2+ binding loop region that modulate the Ca2+-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca2+-binding loop region of C2B domain. The results indicate that Ca2+-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca2+-bound Synaptotagmin-1 associated synaptic vesicles
    corecore