7 research outputs found

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Search for displaced photons produced in exotic decays of the Higgs boson using 13 TeV <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> collisions with the ATLAS detector

    Get PDF
    International audienceA search is performed for delayed and nonpointing photons originating from the displaced decay of a neutral long-lived particle (LLP). The analysis uses the full run 2 dataset of proton-proton collisions delivered by the LHC at a center-of-mass energy of s=13  TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139  fb-1. The capabilities of the ATLAS electromagnetic calorimeter are exploited to precisely measure the arrival times and trajectories of photons. The results are interpreted in a scenario where the LLPs are pair produced in exotic decays of the 125 GeV Higgs boson, and each LLP subsequently decays into a photon and a particle that escapes direct detection, giving rise to missing transverse momentum. No significant excess is observed above the expectation due to Standard Model background processes. The results are used to set upper limits on the branching ratio of the exotic decay of the Higgs boson. A model-independent limit is also set on the production of photons with large values of displacement and time delay
    corecore