92 research outputs found

    Fluconazole for empiric antifungal therapy in cancer patients with fever and neutropenia

    Get PDF
    BACKGROUND: Several clinical trials have demonstrated the efficacy of fluconazole as empiric antifungal therapy in cancer patients with fever and neutropenia. Our objective was to assess the frequency and resource utilization associated with treatment failure in cancer patients given empiric fluconazole antifungal therapy in routine inpatient care. METHODS: We performed a retrospective cohort study of cancer patients treated with oral or intravenous fluconazole between 7/97 and 6/01 in a tertiary care hospital. The final study cohort included cancer patients with neutropenia (an absolute neutrophil count below 500 cells/mm(3)) and fever (a temperature above 38°C or 100.4°F), who were receiving at least 96 hours of parenteral antibacterial therapy prior to initiating fluconazole. Patients' responses to empiric therapy were assessed by reviewing patient charts. RESULTS: Among 103 cancer admissions with fever and neutropenia, treatment failure after initiating empiric fluconazole antifungal therapy occurred in 41% (95% confidence interval (CI) 31% – 50%) of admissions. Patients with a diagnosis of hematological malignancy had increased risk of treatment failure (OR = 4.6, 95% CI 1.5 – 14.8). When treatment failure occurred the mean adjusted increases in length of stay and total costs were 7.4 days (95% CI 3.3 – 11.5) and $18,925 (95% CI 3,289 – 34,563), respectively. CONCLUSION: Treatment failure occurred in more than one-third of neutropenic cancer patients on fluconazole as empiric antifungal treatment for fever in routine clinical treatment. The increase in costs when treatment failure occurs is substantial

    Evidence-Based Guidelines for Empirical Therapy of Neutropenic Fever in Korea

    Get PDF
    Neutrophils play an important role in immunological function. Neutropenic patients are vulnerable to infection, and except fever is present, inflammatory reactions are scarce in many cases. Additionally, because infections can worsen rapidly, early evaluation and treatments are especially important in febrile neutropenic patients. In cases in which febrile neutropenia is anticipated due to anticancer chemotherapy, antibiotic prophylaxis can be used, based on the risk of infection. Antifungal prophylaxis may also be considered if long-term neutropenia or mucosal damage is expected. When fever is observed in patients suspected to have neutropenia, an adequate physical examination and blood and sputum cultures should be performed. Initial antibiotics should be chosen by considering the risk of complications following the infection; if the risk is low, oral antibiotics can be used. For initial intravenous antibiotics, monotherapy with a broad-spectrum antibiotic or combination therapy with two antibiotics is recommended. At 3-5 days after beginning the initial antibiotic therapy, the condition of the patient is assessed again to determine whether the fever has subsided or symptoms have worsened. If the patient's condition has improved, intravenous antibiotics can be replaced with oral antibiotics; if the condition has deteriorated, a change of antibiotics or addition of antifungal agents should be considered. If the causative microorganism is identified, initial antimicrobial or antifungal agents should be changed accordingly. When the cause is not detected, the initial agents should continue to be used until the neutrophil count recovers

    Fungal infection-related mortality versus total mortality as an outcome in trials of antifungal agents

    Get PDF
    BACKGROUND: Disease specific mortality is often used as outcome rather than total mortality in clinical trials. This approach assumes that the classification of cause of death is unbiased. We explored whether use of fungal infection-related mortality as outcome rather than total mortality leads to bias in trials of antifungal agents in cancer patients. METHODS: As an estimate of bias we used relative risk of death in those patients the authors considered had not died from fungal infection. Our sample consisted of 69 trials included in four systematic reviews of prophylactic or empirical antifungal treatment in patients with cancer and neutropenia we have published previously. RESULTS: Thirty trials met the inclusion criteria. The trials comprised 6130 patients and 869 deaths, 220 (25%) of which were ascribed to fungal infection. The relative risk of death was 0.85 (95% CI 0.75–0.96) for total mortality, 0.57 (95% CI 0.44–0.74) for fungal mortality, and 0.95 (95% CI 0.82–1.09) for mortality among those who did not die from fungal infection. CONCLUSION: We could not support the hypothesis that use of disease specific mortality introduces bias in antifungal trials on cancer patients as our estimate of the relative risk for mortality in those who survived the fungal infection was not increased. We conclude that it seems to be reliable to use fungal mortality as the primary outcome in trials of antifungal agents. Data on total mortality should be reported as well, however, to guard against the possible introduction of harmful treatments
    corecore