31 research outputs found
ENGAGE Summary for Policymakers
As the world faces the risks of dangerous climate change, policymakers, industry and civil society leaders are counting on Integrated Assessment Models (IAMs) to inform and guide strategies to deliver on the objectives of the Paris Agreement (PA) and subsequent agreements. The Exploring National and Global Actions to Reduce Greenhouse Gas Emissions (ENGAGE) project has responded to this challenge by engaging these stakeholders in co-producing a new generation of global and national decarbonization pathways
Short telomere length is associated with impaired cognitive performance in European ancestry cohorts
The association between telomere length (TL) dynamics on cognitive performance over the life-course is not well understood. This study meta-analyses observational and causal associations between TL and six cognitive traits, with stratifications on APOE genotype, in a Mendelian Randomization (MR) framework. Twelve European cohorts (N = 17 052; mean age = 59.2 +/- 8.8 years) provided results for associations between qPCR-measuredTL (T/S-ratio scale) and general cognitive function, mini-mental state exam (MMSE), processing speed by digit symbol substitution test (DSST), visuospatial functioning, memory and executive functioning (STROOP). In addition, a genetic risk score (GRS) for TL including seven known genetic variants for TL was calculated, and used in associations with cognitive traits as outcomes in all cohorts. Observational analyses showed that longer telomeres were associated with better scores on DSST (beta = 0.051 per s. d.-increase of TL; 95% confidence interval (CI): 0.024, 0.077; P = 0.0002), and MMSE (beta = 0.025; 95% CI: 0.002, 0.047; P = 0.03), and faster STROOP (beta = -0.053; 95% CI: -0.087, -0.018; P = 0.003). Effects for DSST were stronger in APOE epsilon 4 non-carriers (beta = 0.081; 95% CI: 0.045, 0.117; P = 1.0 x 10(-5)), whereas carriers performed better in STROOP (beta = -0.074; 95% CI: -0.140, -0.009; P = 0.03). Causal associations were found for STROOP only (beta = -0.598 per s. d.-increase of TL; 95% CI: -1.125, -0.072; P = 0.026), with a larger effect in epsilon 4-carriers (beta = -0.699; 95% CI: -1.330, -0.069; P = 0.03). Two-sample replication analyses using CHARGE summary statistics showed causal effects between TL and general cognitive function and DSST, but not with STROOP. In conclusion, we suggest causal effects from longer TL on better cognitive performance, where APOE epsilon 4-carriers might be at differential risk.Peer reviewe
The impact of low-frequency and rare variants on lipid levels
Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing
Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated
Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation
Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency >= 0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.Peer reviewe
A common biological basis of obesity and nicotine addiction
J. Kaprio ja J. Tuomilehto työryhmien jäseniä (yht. 281).Peer reviewe
Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length
Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) 350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease
Data sharing in large research consortia: Experiences and recommendations from ENGAGE.
Data sharing is essential for the conduct of cutting-edge research and is increasingly required by funders concerned with maximising the scientific yield from research data collections. International research consortia are encouraged to share data intra-consortia, inter-consortia and with the wider scientific community. Little is reported regarding the factors that hinder or facilitate data sharing in these different situations. This paper provides results from a survey conducted in the European Network for Genetic and Genomic Epidemiology (ENGAGE) that collected information from its participating institutions about their data-sharing experiences. The questionnaire queried about potential hurdles to data sharing, concerns about data sharing, lessons learned and recommendations for future collaborations. Overall, the survey results reveal that data sharing functioned well in ENGAGE and highlight areas that posed the most frequent hurdles for data sharing. Further challenges arise for international data sharing beyond the consortium. These challenges are described and steps to help address these are outlined
A common biological basis of obesity and nicotine addiction.
Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34 216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10(-7)). These findings replicate in a second large data set (N=127 274, thereof 76 242 smokers) for both SI (P=1.2 × 10(-5)) and CPD (P=9.3 × 10(-5)). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity