48 research outputs found
Food allergy in the Netherlands: differences in clinical severity, causative foods, sensitization and DBPCFC between community and outpatients
Background: It is unknown whether food allergy (FA) in an unselected population is comparable to those from an outpatient clinic population. Objective: To discover if FA in a random sample from the Dutch community is comparable to that of outpatients. Methods: This study was part of the Europrevall-project. A random sample of 6600 adults received a questionnaire. Those with symptoms to one of 24 defined priority foods were tested for sΙgE. Participants with a positive case history and elevated sIgE were evaluated by double-blind placebo-controlled food challenge (DBPCFC). Outpatients with a suspicion of FA were evaluated by questionnaire, sIgE and DBPCFC. Results: In the community, severe symptoms were reported less often than in outpatients (39.3% vs. 54.3%). Participants in the community were less commonly sensitized to any of the foods. When selecting only those with a probable FA (i.e. symptoms of priority food and elevation of sIgE to the respective food), no major differences were observed with respect to severity, causative foods, sensitization and DBPCFC between the groups. Conclusion: In the Netherlands, there are large differences in self-reported FA between community and outpatients. However, Dutch community and outpatients with a probable FA do not differ with respect to severity, causative foods, sensitization and DBPCFC-outcome
Cashew nut allergy: clinical relevance and allergen characterisation
Cashew plant (Anacardium occidentale L.) is the most relevant species of the Anacardium genus. It presents high economic value since it is widely used in human nutrition and in several industrial applications. Cashew nut is a well-appreciated food (belongs to the tree nut group), being widely consumed as snacks and in processed foods by the majority of world's population. However, cashew nut is also classified as a potent allergenic food known to be responsible for triggering severe and systemic immune reactions (e.g. anaphylaxis) in sensitised/allergic individuals that often demand epinephrine treatment and hospitalisation. So far, three groups of allergenic proteins have been identified and characterised in cashew nut: Ana o 1 and Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily), which are all classified as major allergens. The prevalence of cashew nut allergy seems to be rising in industrialised countries with the increasing consumption of this nut. There is still no cure for cashew nut allergy, as well as for other food allergies; thus, the allergic patients are advised to eliminate it from their diets. Accordingly, when carefully choosing processed foods that are commercially available, the allergic consumers have to rely on proper food labelling. In this sense, the control of labelling compliance is much needed, which has prompted the development of proficient analytical methods for allergen analysis. In the recent years, significant research advances in cashew nut allergy have been accomplished, which are highlighted and discussed in this review.This work was supported by FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020 with grant no. UID/QUI/50006/2013–POCI/01/ 0145/FEDER/007265. Joana Costa is grateful to FCT post-doctoral grant (SFRH/BPD/102404/2014) financed by POPH-QREN (subsidised by FSE and MCTES).info:eu-repo/semantics/publishedVersio
Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins
Epitope databases and the protein sequences of published plant genomes are suitable to identify some of the proteins causing food allergies and sensitivities. Brachypodium distachyon, a diploid wild grass with a sequenced genome and low prolamin content, is the closest relative of the allergen cereals, such as wheat or barley. Using the Brachypodium genome sequence, a workflow has been developed to identify potentially harmful proteins which may cause either celiac disease or wheat allergy-related symptoms. Seed tissue-specific expression of the potential allergens has been determined, and intact epitopes following an in silico digestion with several endopeptidases have been identified. Molecular function of allergen proteins has been evaluated using Gene Ontology terms. Biologically overrepresented proteins and potentially allergen protein families have been identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10142-012-0294-z) contains supplementary material, which is available to authorized users
Food Allergen Labelling Regulation
Food allergies have risen in prominence over the last 20–30 years and currently, as there is no accepted cure, individuals usually have to practice life-long avoidance of their problem food(s). There are many different types of food allergy and intolerance, but those involving the immune system are amongst the most important. This chapter focuses on the food labelling of allergens that seeks to protect those with immune-mediated allergies
A protocol for a systematic review to identify allergenic tree nuts and the molecules responsible for their allergenic properties.
Food regulations require that tree nuts and derived ingredients are included on food labels in order to help individuals with IgEmediated allergies to avoid them. However, there is no consensus regarding which tree nut species should be included in this definition and specified on food labels. Allergen detection methods used for monitoring foods target allergen molecules, but it not clear which are the most relevant molecules to choose. A modified population-exposure comparator-outcome (PECO) approach has been developed to systematically review the evidence regarding (1) which allergenic tree nuts should be included in food allergen labelling lists and (2) which are theclinically relevant allergens which should be used as analytical targets. A search strategy and criteria against which the evidence will be evaluated have been developed. The resulting evidence will be used to rank tree nuts with regards their ability to cause IgE-mediated allergies, and allergen molecules regarding their capacity to elicit an allergic reaction. The results of the systematic review will enable risk assessors and managers to identify tree nut species that should be included in food allergen labelling lists and ensure analytical methodsfor determination of allergens in foods are targeting appropriate molecules
Circulating Ara h 6 as a marker of peanut protein absorption in tolerant and allergic humans following ingestion of peanut-containing foods
Background Bioaccessibility of food allergens may be a key determinant of allergic reactions. Objective To develop a protocol allowing the detection of the major peanut allergen, Ara h 6, in the bloodstream following ingestion of low amounts of peanut, and to compare Ara h 6 bioaccessibility by food matrix. We further assessed for differences in absorption in healthy versus peanut‐allergic volunteers. Methods A blood pretreatment combining acidic shock and thermal treatment was developed. This protocol was then applied to blood samples collected from human volunteers (n=6, healthy controls; n=14, peanut‐allergic patients) at various timepoints following ingestion of increasing levels of peanut incurred in different food matrices (cookies, peanut butter, chocolate dessert). Immuno‐detection was performed using an in‐house immunoassay. Results An original pretreatment protocol was optimised, resulting in irreversibly dissociation of human antibodies‐Ara h 6 immune complex, thus rendering Ara h 6 accessible for its immunodetection. Ara h 6 was detected in samples from all volunteers following ingestion of 300‐1000mg peanut protein, although variations in the kinetics of passage were observed between individuals and matrices. Interestingly, in peanut‐allergic subjects, Ara h 6 could be detected following ingestion of lower doses, and at higher concentrations than in non‐allergic volunteers. Conclusions and Clinical Relevance The kinetics and intensity of Ara h 6 passage in bloodstream depend on both individual and food matrix. Peanut‐allergic patients appear to demonstrate higher absorption rate, the clinical significance of which warrants further evaluation
Precautionary labelling of foods for allergen content: Are we ready for a global framework?
Food allergy appears to be on the rise with the current mainstay of treatment centred on allergen avoidance. Mandatory allergen labelling has improved the safety of food for allergic consumers. However an additional form of voluntary labelling (termed precautionary allergen labelling) has evolved on a wide range of packaged goods, in a bid by manufacturers to minimise risk to customers, and the negative impact on business that might result from exposure to trace amounts of food allergen present during cross-contamination during production. This has resulted in near ubiquitous utilisation of a multitude of different precautionary allergen labels with subsequent confusion amongst many consumers as to their significance. The global nature of food production and manufacturing makes harmonisation of allergen labelling regulations across the world a matter of increasing importance. Addressing inconsistencies across countries with regards to labelling legislation, as well as improvement or even banning of precautionary allergy labelling are both likely to be significant steps forward in improved food safety for allergic families. This article outlines the current status of allergen labelling legislation around the world and reviews the value of current existing precautionary allergen labelling for the allergic consumer. We strongly urge for an international framework to be considered to help roadmap a solution to the weaknesses of the current systems, and discuss the role of legislation in facilitating this
Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean – where do we stand?
Review.According to EU regulation, genetically modified (GM) plants considered to be allergenic have to be assessed concerning their endogenous allergens before placement on the EU market, in line with the international standards described in Codex Alimentarius. Under such premises, a quantitative relevant increase in allergens might occur in GM plants as an unintended effect compared with conventionally produced crops, which could pose a risk to consumers. Currently, data showing a connection between dose and allergic sensitisation are scarce since the pathophysiological mechanisms of sensitisation are insufficiently understood. In contrast, data on population dose-distribution relationships acquired by oral food challenge are available showing a connection between quantity of allergenic protein consumed and the population of allergic individuals experiencing reactions. Soybean is currently the only recognised allergenic GM food by law for which EFSA has received applications and was therefore taken as an example for defining an assessment strategy. Identification of potential allergens, methodology for quantification as well as risk assessment considerations, are discussed. A strategy is proposed for the identification, assessment and evaluation of potential hazards/risks concerning endogenous allergenicity in food derived from plants developed by biotechnology. This approach could be expanded to other allergenic foods in the future, whenever required.Peer Reviewe
