1,460 research outputs found

    Heparan sulfates and heparan sulfate binding proteins in sepsis

    Get PDF
    Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy

    Diversity, distribution and conservation of the terrestrial reptiles of Oman (Sauropsida, Squamata)

    Get PDF
    All authors: Salvador Carranza , Meritxell Xipell, Pedro Tarroso, Andrew Gardner, Edwin Nicholas Arnold, Michael D. Robinson, Marc Simó-Riudalbas, Raquel Vasconcelos, Philip de Pous, Fèlix Amat, Jiří Šmíd, Roberto Sindaco, Margarita Metallinou †, Johannes Els, Juan Manuel Pleguezuelos, Luis Machado, David Donaire, Gabriel Martínez, Joan Garcia-Porta, Tomáš Mazuch, Thomas Wilms, Jürgen Gebhart, Javier Aznar, Javier Gallego, Bernd-Michael Zwanzig, Daniel Fernández-Guiberteau, Theodore Papenfuss, Saleh Al Saadi, Ali Alghafri, Sultan Khalifa, Hamed Al Farqani, Salim Bait Bilal, Iman Sulaiman Alazri, Aziza Saud Al Adhoobi, Zeyana Salim Al Omairi, Mohammed Al Shariani, Ali Al Kiyumi, Thuraya Al Sariri, Ahmed Said Al Shukaili, Suleiman Nasser Al Akhzami.In the present work, we use an exceptional database including 5,359 records of 101 species of Oman’s terrestrial reptiles together with spatial tools to infer the spatial patterns of species richness and endemicity, to infer the habitat preference of each species and to better define conservation priorities, with especial focus on the effectiveness of the protected areas in preserving this unique arid fauna. Our results indicate that the sampling effort is not only remarkable from a taxonomic point of view, with multiple observations for most species, but also for the spatial coverage achieved. The observations are distributed almost continuously across the two-dimensional climatic space of Oman defined by the mean annual temperature and the total annual precipitation and across the Principal Component Analysis (PCA) of the multivariate climatic space and are well represented within 17 out of the 20 climatic clusters grouping 10% of the explained climatic variance defined by PC1 and PC2. Species richness is highest in the Hajar and Dhofar Mountains, two of the most biodiverse areas of the Arabian Peninsula, and endemic species richness is greatest in the Jebel Akhdar, the highest part of the Hajar Mountains. Oman’s 22 protected areas cover only 3.91% of the country, including within their limits 63.37% of terrestrial reptiles and 50% of all endemics. Our analyses show that large areas of the climatic space of Oman lie outside protected areas and that seven of the 20 climatic clusters are not protected at all. The results of the gap analysis indicate that most of the species are below the conservation target of 17% or even the less restrictive 12% of their total area within a protected area in order to be considered adequately protected. Therefore, an evaluation of the coverage of the current network of protected areas and the identification of priority protected areas for reptiles using reserve design algorithms are urgently needed. Our study also shows that more than half of the species are still pending of a definitive evaluation by the International Union for Conservation of Nature (IUCN).This work was funded by grants CGL2012-36970, CGL2015-70390-P from the Ministerio de Economía y Competitividad, Spain (cofunded by FEDER) to SC, the project Field study for the conservation of reptiles in Oman, Ministry of Environment and Climate Affairs, Oman (Ref: 22412027) to SC and grant 2014-SGR-1532 from the Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya to SC. MSR is funded by a FPI grant from the Ministerio de Economía y Competitividad, Spain (BES-2013-064248); RV, PT and LM were funded by Fundação para a Ciência e Tecnologia (FCT) through post-doc grants (SFRH/BPD/79913/2011) to RV, (SFRH/BPD/93473/2013) to PT and PhD grant (SFRH/BD/89820/2012) to LM, financed by Programa Operacional Potencial Humano (POPH) – Quadro de Referência Estrategico Nacional (QREN) from the European Social Fund and Portuguese Ministerio da Educação e Ciência

    The First Cobalt Single-Molecule Magnet

    Full text link
    The first cobalt molecule to function as a single-molecule magnet, [Co4(hmp)4(MeOH)4Cl4], where hmp- is the anion of hydroxymethylpyridine, is reported. The core of the molecule consists of four Co(II) cations and four hmp- oxygen atoms ions at the corners of a cube. Variable-field and variable-temperature magnetization data have been analyzed to establish that the molecule has a S=6 ground state with considerable negative magnetoanisotropy. Single-ion zero-field interactions (DSz2) at each cobalt ion are the origin of the negative magnetoanisotropy. A single-crystal of the compound was studied by means of a micro-SQUID magnetometer in the range of 0.040-1.0K. Hysteresis was found in the magnetization versus magnetic field response of this single crystal. It is concluded that this is the first cobalt molecule to function as a single-molecule magnet.Comment: 10 pages, 4 figure, 2001 MMM conferenc

    In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail

    Get PDF
    Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earth's magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.Comment: 14 pages, 4 figure

    Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study

    Get PDF
    Three forms of lactoferrin (Lf) that differed in their levels of iron loading (Lf, LfFe, and LfFe2) were simultaneously labeled with the fluorophores AF350 and AF430. All three resulting fluorescent lactoferrins exhibited fluorescence resonance energy transfer (FRET), but they all presented different FRET patterns. Whereas only partial FRET was observed for Lf and LfFe, practically complete FRET was seen for the holo form (LfFe2). For each form of metal-loaded lactoferrin, the AF350–AF430 distance varied depending on the protein conformation, which in turn depended on the level of iron loading. Thus, the FRET patterns of these lactoferrins were found to correlate with their iron loading levels. In order to gain greater insight into the number of fluorophores and the different FRET patterns observed (i.e., their iron levels), a computational analysis was performed. The results highlighted a number of lysines that have the greatest influence on the FRET profile. Moreover, despite the lack of an X-ray structure for any LfFe species, our study also showed that this species presents modified subdomain organization of the N-lobe, which narrows its iron-binding site. Complete domain rearrangement occurs during the LfFe to LfFe2 transition. Finally, as an example of the possible applications of the results of this study, we made use of the FRET fingerprints of these fluorescent lactoferrins to monitor the interaction of lactoferrin with a healthy bacterium, namely Bifidobacterium breve. This latter study demonstrated that lactoferrin supplies iron to this bacterium, and suggested that this process occurs with no protein internalization.This work was supported by MINECO and FEDER (projects CTQ2012-32236, CTQ2011-23336, and BIO2012-39682-C02-02) and BIOSEARCH SA. F.C. and V.M.R. are grateful to the Spanish MINECO for FPI fellowships

    Unintended consequences of reducing QT-alert overload in a computerized physician order entry system

    Get PDF
    Purpose: After complaints of too many low-specificity drug-drug interaction (DDI) alerts on QT prolongation, the rules for QT alerting in the Dutch national drug database were restricted in 2007 to obviously QT-prolonging drugs. The aim of this virtual study was to investigate whether this adjustment would improve the identification of patients at risk of developing Torsades de Pointes (TdP) due to QT-prolonging drug combinations in a computerized physician order entry system (CPOE) and whether these new rules should be implemented. Methods: During a half-year study period, inpatients with overridden DDI alerts regarding QT prolongation and with an electrocardiogram recorded before and within 1 month of the alert override were included if they did not have a ventricular pacemaker and did not use the low-risk combination cotrimoxazole and tacrolimus. QT-interval prolongation and the risk of developing TdP were calculated for all patients and related to the number of patients for whom a QT-alert would be generated in the new situation with the restricted database. Results: Forty-nine patients (13%) met the inclusion criteria. In this study population, knowledge base-adjustment would reduce the number of alerts by 53%. However, the positive predictive value of QT alerts would not change (31% before and 30% after) and only 47% of the patients at risk of developing TdP would be identified in CPOEs using the adjusted knowledge base. Conclusion: The new rules for QT alerting would result in a poorer identification of patients at risk of developing TdP than the old rules. This is caused by the many non-drug-related risk factors for QT prolongation not being incorporated in CPOE alert generation. The partial contribution of all risk factors should be studied and used to create clinical rules for QT alerting with an acceptable positive predictive value
    • …
    corecore