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Abstract:  The pressures exerted on the walls of rectangular planform steel flexible-walled 

silos by several different stored granular bulk solids are investigated using a validated finite 

element model that has been used in several previous studies.  These pressures and the state 

of stress in the bulk solid are explored for a range of silo geometries and stored bulk solids.  

The results show that the horizontal pressure distribution across a silo wall is generally not 

uniform.  This demonstrates that widely used theories may be adequate for stiff concrete 

silos, are far from suited to flexible-walled steel silos, and the differences can be used to 

produce much lighter structures.  These findings match previously published experimental 

and analytical results for square planform silos where much larger pressures develop in the 

corners.  The present analyses show that rectangular silos differ from those of square section, 

in that the mean pressure and degree of pressure variation is different on the two walls.  The 

mechanisms causing these changes are investigated.  The results further demonstrate that 

relatively small changes in the properties of a stored solid can produce significant changes in 

the pressure magnitudes and patterns, and hence greatly influence the silo structural design.  

The paper concludes that existing design guidance is seriously deficient and leads to metal 

silos that are considerably more expensive than is necessary. 
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Introduction 

Steel silos are constructed with a variety of planforms of which circular is the most common 

due to the apparently simple internal pressure regime which leads to shell structures 

predominantly under membrane stresses [1].  The structural design process appears to be 

simple and exploits the full strength of the thin shell.  However, alternative structural forms 

such as rectangular planform can offer significant advantages in terms of both ease and cost 

of fabrication, as well as efficient use of space [2,3]. While stiffeners, or corrugated-sheet 

rectangular silos are also used in industrial practice, only the simpler and more common 

rectangular silos constructed from planar panels are considered here.  

The stress resultants that support the loads from the stored bulk solid are different in each 

planform type.  In circular planform silos, the high stiffness against radial deformations lead 

to small wall deformations [4,5] with the solid constrained to retain the same shape.  By 

contrast, rectangular silos support the loads by a combination of bending and membrane 

actions, and the bending deformations may be relatively large if the wall is reasonably thin 

[2].  The larger deflections lead to reduced wall pressures on significant parts of the silo 

walls, so that more economic structural designs can be achieved by using moderately flexible 

walls.  Finally, increased membrane action in these walls may reduce bending effects [6,7]. 

Pressure predictions in current silo design standards [e.g. 8-10] mostly use the theory of 

Janssen [11] as the reference condition.  The vertical and horizontal pressures acting on the 

wall are derived from the equilibrium of a conceptual horizontal slice of stored bulk solid at 

each depth leading to a mean normal pressures against the wall given by (Eq. 1)   
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in which z is the depth below the equivalent surface,  is the stored solid unit weight and po is 

the asymptotic pressure at great depth given by  
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and the characterising depth zo is given by  
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where the wall perimeter is U, the plan cross-sectional area is A, the wall friction coefficient 

is  and the mean lateral pressure ratio is K.  The hydraulic radius is given by A/U. 
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The mean pressure on the silo wall is deemed to only vary with depth, but depends on the 

parameters that characterise the bulk solid.  However, Eq. 1 gives no information about any 

horizontal variation of pressure, and by default, it is assumed to be constant, though Janssen’s 

[11] original paper proposed that the pressure at the mid-side of each wall in a rectangular 

silo might be higher [12].  The assumption of invariant horizontal pressure around the 

circumference of a circular silo is widely adopted, though significant asymmetry has been 

shown to develop even in symmetrically filled and discharged silos [e.g. 13-16].  By contrast, 

rectangular planform silos have a systematic asymmetry which can lead to large variations in 

horizontal pressure [17].  Experimental observations on a pilot scale square planform silo 

showed that a substantial reduction in wall pressure occurs at the mid-side if the wall is 

flexible [18,19].  These experimental observations were reinforced and accurately modelled 

by finite element calculations using a validated constitutive model for the stored bulk solid 

[20,7]. 

Many authors [21-28] have used the finite element method to predict the pressures in circular 

silos during both filling and discharge, but studies of rectangular silos are rare.   A major 

review and comparative study of the finite element method was carried out by Rotter et al 

[29].  The effect of wall flexibility in circular silos was studied by Ooi and Rotter [24] where 

the critical role of the relative stiffness of the solid and the containing structure was 

demonstrated, and by Goodey et al [7] for square planform silos which made the same 

finding.  The reduction in pressures at the mid-side of each wall in a rectangular silo was also 

shown by Goodey et al [30] in a preliminary study.  

This paper presents a wider-ranging study of pressures on the walls of rectangular planform 

silos using the same validated finite element model [20].  

Current design guidance 

The notation and conventions used in this paper to describe rectangular planform silos are 

shown in Fig. 1 taken from Eurocode EN 1991-4 [8].  Pressures in rectangular silos with plan 

aspect ratios (a/b with a>b) of up to 2 are investigated.  Silos with very high plan aspect 

ratios are generally classed as bunkers by design guides [31] and are often treated 

theoretically using the assumption of plane strain [32].  This implies that the pressure on the 

long wall is independent of the pressure on the short wall of a bunker, but this may not be the 

case for silos.   
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Reimbert and Reimbert [33] tested model-scale silos in which they measured the force on 

each wall, and assumed the pressure to be uniform, thus evaluating only the mean pressure.  

They drew the practical conclusion from their experiments that the pressure on the small 

wall, b, is close to that which would act on a square silo of side length b.  By considering the 

vertical equilibrium of a slice of stored material, the pressure on the longer walls was 

deduced.  This led to the pressure on the long walls as that acting on a square silo of wall side 

length b′: 

' 2
b

b b
a

 
  

 
 (4) 

where a and b are as indicated in Fig. 1.  These dimensions were then applied using Janssen’s 

equation with a constant value of lateral pressure ratio to deduce the mean pressure on each 

wall.  Gaylord and Gaylord [31] reported a similar derivation of pressures based on the same 

assumptions but using different notation.   

The Eurocode EN 1991-4 [8] only gives pressure predictions for rigid walled silos. For 

slender silos, these are based upon the Janssen equation and use the area to circumference 

ratio, A/U, which leads to the equivalence:  
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A constant lateral pressure ratio, K, is assumed at all depths, which implies that the pressure 

on all walls is identical.  

The Australian standard, AS 3774 [10] uses the Janssen equation with different horizontal 

dimensions for the long and the short wall, leading to different pressures on them.  The 

adopted dimension of each wall varies with the wall ratio a/b, but there are clearly 

typographical errors in the associated table, making the result difficult to apply.  It is unclear 

whether global equilibrium is maintained when this empirical device is used.       

Pressures predicted by several codes and theories for a sample silo with wall ratio a/b = 2 

(Fig. 2) show that a silo designer obtains quite different pressure regimes when using 

different sources.  All the above current design codes imply that the wall of the silo is rigid 

and that the lateral pressure ratio is constant throughout.  This may be acceptable for the 

stiffer walls of concrete silos, but for flexible walled steel silos such pressure regimes are 

inaccurate.  Since the structural design is dominated by wall normal pressures, this 

assumption has significant implications both for structural continuity at the corners and for 
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the wall strength requirements.  If the longer wall is even slightly flexible, it moves outwards.  

When the corners are structurally stiff (i.e. identical wall rotations about a vertical axis 

through the corner) the shorter wall must move inwards pressing into the stored bulk solid.  

There is then an inevitable increase in short wall pressures and a decrease in long wall 

pressures.  Thus, the flexibility of the walls can play a critical role in determining the 

differences in mean pressure on the long and short walls.  

 

Existing finite element models 

Since experimentally measured pressures are only known at discrete points and their 

interpretation is often difficult [34] and analytical pressure prediction involves very 

considerable simplifying assumptions, it is desirable to use the finite element method to 

devise reliable design rules.  A number of research groups have applied the finite element 

method to silo pressure predictions with varying degrees of success when compared with 

both the theoretical and experimental evidence.  Experimental observations have shown that a 

3D model is required for a square silo, due to the variation of wall pressure across each silo 

wall [6,35]. An adequate description of the stored bulk solid behaviour is particularly difficult 

[36] and a number of authors have implemented acceptable limitations in order to produce 

tractable models [24,7].  Most previous finite element work on silo pressures has assumed the 

silo wall to be a rigid boundary, but in their analysis of circular silos Ooi and Rotter [24] 

demonstrated that the pressures could be governed by the relative stiffness of the granular 

solid and the wall, and that k (the local value of horizontal to vertical pressure) could vary 

throughout the stored bulk solid.  However, they also showed that a circular silo wall had to 

be very thin and the granular solid rather stiff for the effect to make a significant change in 

the wall pressures.   

For non-circular planforms, three-dimensional silo analyses demonstrate the complex patterns 

of wall pressure that occur in a silo.  Guines et al, [25] investigated a 3D silo and showed that 

wall flexibility influenced both the predicted normal pressures and the location of the 

maximum wall normal pressure.  Goodey [37] showed that the variation of k throughout the 

stored bulk solid could be quite large for filling pressures in both square and rectangular 

planform silos. 
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 Finite Element Modelling  

Validated Finite element model 

Finite element models can produce predictions for both filling and discharge pressures, but 

the work presented here investigates only filling pressures.  As a result the granular bulk solid 

has been modelled as a continuum, using a non-linear elasto-plastic stress-dependent 

constitutive law for the bulk solid.  The validation was based on two major series of 

experiments on pilot scale silos [17,34] and extensive comparisons drawn to validate the 

finite element model by Goodey et al [20].  This validation also used a range of different 

stored bulk solids and silo geometries to guarantee its wide applicability. 

Description of the FE model for a rectangular planform silo and stored bulk solid 

The finite element model was constructed using the commercially-verified package, 

ABAQUS [38].  Taking advantage of symmetry, only one quarter of the structure was 

modelled (Fig. 3). The silo walls were modelled using 4-noded quadrilateral shell elements 

and the transition corner, where the box and hopper walls meet, was restrained against 

vertical displacement, with symmetry conditions on the vertical boundaries.  The box was 

modelled as supported on columns at the corners with a pyramidal hopper below.  The linear 

elastic structure was treated as mild steel with  = 210 GPa and  = 0.3.   

The stored granular solid was modelled using 8-noded brick continuum elements.  A 

Coulomb friction model was used for the interface between the solid and the wall, with a 

constant wall friction coefficient .  Values are given in Table 1 for the constitutive model of 

the solids studied here.  These solids were Leighton Buzzard sand (a widely-studied stiff 

sand), pea gravel and wheat.  Values for the sand and pea gravel were taken from simple tests 

[35], while the values for wheat were taken from the triaxial tests of Ooi [39]. 

Five planform ratios were considered: a/b = 1.0, 1.1, 1.3, 1.5 and 2.0.  The plan dimension of 

the short wall was maintained at 1.5m and the planform ratio varied by altering the length of 

the long wall.  The corresponding hydraulic radii are respectively 0.25, 0.26, 0.28, 0.30 and 

0.33.  The height of these silos was fixed at 10m for this initial study, resulting in a relatively 

slender silo with vertical aspect ratio h/b = 6.67 [8]. 

The models all had a hopper below the box, with the transition junction between them.  The 

boundary condition of a hopper or flat base can be represented in different ways, but the 

choice can have a major effect on pressure predictions above the transition [40].  A hopper is 
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chosen here to minimise the influence on the box pressures.  To avoid serious distortion of 

the adjacent elements, the hopper angle was set at approximately 45° with the outlet centrally 

located with respect to the planform. The mesh density was the same as that verified by the 

convergence tests in previous studies [37]. 

Findings from the FE calculations  

Rigid walled rectangular silos - comparison to current design guidance 

As current design codes assume the silo to have rigid walls, this condition was analysed first 

using a finite element model in which the wall nodes were fully restrained against 

displacement and rotation in all directions.  The chosen bulk solid was Leighton Buzzard 

sand in a planform ratio a/b = 2. 

The mean normal pressure on each of the long and short walls (Fig. 4) was calculated from 

the finite element output using Simpson’s rule, and compared with the prediction of 

EN 1991-4 [8].  For rigid walls, the mean horizontal pressure on the long and short walls was 

the same, indicating that the pressure is invariant across each wall.  The values were quite 

accurately predicted by this standard.  Some end effects are apparent near the box/hopper 

transition where the average pressure deviates from that predicted by EN 1991-4 [8].  These 

end-effects have previously been noted by many other researchers, e.g. [41]. 

The predicted vertical stresses on a horizontal plane through the bulk solid are quite invariant, 

which confirms the assumption that the value of k may be treated as constant at any level.  

Because the stored solid is completely restrained by the rigid walls, very little plastic 

straining is observed and it is consequently reasonable that a single ratio of lateral to vertical 

pressure (such as K as assumed in EN 1991-4) is adopted in design. 

The predicted wall pressures from the finite element model with rigid walls have shown good 

agreement with EN 1991-4 (Fig. 2) but indicate that both the simple theory of Reimbert and 

Reimbert [33] and that of AS 3774 [10] are probably in error, since both predict different 

pressures on the long and short walls.  AS 3774 predicts a smaller difference between the 

long and the short walls, and for design purposes this difference may be insignificant, but 

Reimbert and Reimbert predict quite a large difference.  It may be noted that Reimbert and 

Reimbert based their calculations on a small number of small scale experiments, and these 

tests may have been significantly affected by scale effects that can be very influential [42].  
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Flexible walled rectangular silos 

In rectangular silos with flexible walls, the flexibility of the wall plays a significant role [17].  

In a square planform silo, the normal wall pressure is higher in structurally stiff areas, such as 

the vertical corner of the box or at the transition.  In the structurally flexible areas, near the 

mid-side of each wall, the pressure is lower. An extensive explanation of the mechanics of 

this load transfer was given elsewhere [19,20], but in simple terms an arching mechanism 

develops within the stored solid across the diagonals of the box, transferring vertical load 

from the flexible wall midsides to the structurally stiffer corners.  This leads to much reduced 

pressures against the wall at the midsides. Initial studies [30] showed that a similar form of 

pressure distribution to that of a square planform should exist in rectangular planform silos.  

Using the planform ratio a/b = 2, the effect of varying the wall stiffness was explored by 

altering the wall thickness.  To provide a clear exploration of the mechanics of wall 

flexibility, unstiffened plates with a very wide range of thicknesses were explored (15 ≤ b/t ≤ 

300) for a silo filled with Leighton Buzzard sand.  Initial predictions are shown in Fig. 5, 

where even a very high wall stiffness (b/t = 15) leads to a clearly evident disparity between 

the average wall pressure on the two walls, and only when the walls are rigid is there no 

disparity at all.  The mean wall pressure on the long wall tends to be less than that predicted 

by EN 1991-4 [8].  It may also be noted that, by contrast with the predictions of both 

Reimbert and Reimbert and AS 3774, the normal pressure on the long wall is lower than that 

on the short wall.  This is caused by the phenomenon outlined above, where the horizontal 

bending continuity of the corners of the silo structure reduce long wall pressures and increase 

short wall pressures.  The outward deformation of the flexible long wall (shown 

schematically in Fig. 6) induces corner rotations about the vertical axis that lead to inward 

deformation of the short wall. Quite large displacements may exist when soft solids are stored 

in silos with thin walls.  For example, for a ratio a/b of 2 and a/t of 100, displacements of /a 

= 1/455 may develop in the longer wall and δ/b = 1/1606 in the shorter wall.  This results in 

lower (tending towards active) pressures on the long wall and higher (tending towards 

passive) pressures on the short wall.   

An additional analysis, in which the flexural continuity at the corner was removed, modelling 

each wall as a separate plate, demonstrated that both walls then experienced outward 

deformations, producing lower pressures on the short wall than in the original calculation. 

When the wall thickness is decreased, the variation of pressure across each wall at the depth 

of 5m in the box (Fig. 7) is exaggerated.  For clarity, the distance along the short wall is 
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plotted in the negative direction.  At the box corner, the two orthogonal horizontal stresses in 

the solid differ in this flexible-walled silo.  Since the value of K in silos is always far below 

unity, it is reasonable to assume that the major principal stress is vertical.  The high pressures 

in the corner are consistent with the arching mechanism between diagonally opposing corners 

presented by Rotter et al [19].  

 

Variation of stored material 

The analyses were repeated using the properties of wheat and pea gravel.  The variation of 

horizontal pressure across the wall at a depth of 5m is shown in Figs 7b and 7c respectively.  

Wheat is a significantly softer material than Leighton Buzzard sand, and the result is that 

whilst the same phenomena seen in sand are still to be observed, the magnitude of these 

effects is greatly reduced in the lighter, softer solid.  The absolute magnitude of wall 

pressures is also reduced because the density of wheat is lower.  By contrast, pea gravel, with 

the same density and other classical bulk solids properties as sand, behaves quite differently.  

Peak wall pressures are higher for the pea gravel that has very similar bulk properties to the 

sand, and the arching effect is more pronounced.  It is clear that other parameters, such as the 

wall friction coefficient, have a significant effect on the wall pressures, and further 

investigation is needed.  No predictive model of this effect exists in current design guidance.   

 

Variation of planform ratio  

The different planform ratios defined above were modelled using a flexible wall of thickness 

b/t = 100.   This relatively thin wall might lead to geometrically nonlinear plate bending 

effects, but an exploration of this additional phenomenon is beyond the scope of the current 

paper. 

The average wall normal pressures on the long and the short walls in sand are shown in Fig. 

8, represented as a percentage deviation from the appropriate EN 1991-4 value.  Again, the 

average pressure on the short wall is seen to be systematically higher than that on the long 

wall.  With increasing planform ratio there is an increasing difference between the average 

pressures predicted on the long and short walls.  As the ratio a/b increases, there is a 

consistent but smaller percentage decrease in average pressure on the long walls, but pressure 

increases on the short wall. 
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Comparison with predictive model for square silos of Rotter et al [19] 

Rotter et al [19] proposed an empirical model based on experimental data that enables the 

redistribution of pressure at a horizontal level to be determined.  This takes the form of a two-

parameter hyperbolic function: 

2
cosh

sinh
m

x
p p

L

 



   
    

   
 (6) 

in which pm is the mean wall pressure at any level, x is the horizontal distance from the wall 

centreline, L is the width of the silo side and  is a coefficient to be determined.  The mean 

wall pressure pm may be compared with the Janssen pressure and the value of  determines 

the level of pressure redistribution.  Goodey et al [7] showed that the finite element method 

produced results that also closely followed this functional form in square planform silos. 

 

Table 2 shows the values of  computed for a range of rectangular silos of planform ratio a/b 

from 1 to 2.  The values of  all rise as the wall stiffness is reduced.  An increase in effective 

wall stiffness is caused by either increasing the wall thickness or reducing the planform ratio.  

Even with a large wall thickness, the values of  may not converge for the short and long 

walls, and the values for the longer wall are always greater than those for the short wall. 

 

Discussion 

It is now widely accepted that the filling pressures in a rigid-walled silo are reasonably well 

predicted by Janssen’s equation, as it appears in various modified forms in different Codes of 

Practice and standard texts [1,8-10].  In flexible-walled silos its application is much less 

certain.  Pressure variations in circular silos caused by ring stiffeners have been found (e.g. 

[24]), and the authors have shown that in square planform silos, the relative stiffness of the 

stored solid and the silo wall can play a major role in determining the pressure distribution.  

The predictions of a finite element model using an appropriate constitutive law have shown 

that the wall pressures and the stresses within the stored bulk solid are far from uniform in a 

rectangular planform silo. 

 

Since the horizontal bending moments that develop in rectangular silo walls dominate the 

structural requirements for strength, and these moments are very sensitive to the mid-side 

pressure, it is clear that significant design savings can be obtained for these structures. The 
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wall plate thickness can be reduced, leading to lower weight and more structurally efficient 

forms.   

The development of design guidance to permit engineers to exploit these findings requires the 

changing distribution of wall pressures, characterised by α, to be identified for a wide range 

of solids, aspect ratios, wall thicknesses and depths in the silo.  Many current industrial silos 

have horizontal stiffeners or corrugated walls, and their effect may also need to be addressed. 

The values of α must be related to the stiffness of the stored solid, together with advice on 

how that stiffness can be determined.  These questions are far beyond the scope of this paper, 

but further work has already been undertaken which should lead to a full description of 

appropriate design calculations.  

 

Conclusions  

The predictions of a 3-D finite element model have been presented for filling pressures in a 

rectangular planform silo with walls having a range of systematically-chosen flexibilities 

containing three different stored bulk solids.  The state of stress in the stored solid and the 

pressures imposed on the silo walls again confirm that the horizontal pressure distribution at 

any given depth is likely to be far from uniform. 

The relative elastic stiffness of stored material and structural elements determines the 

distribution of horizontal wall pressures. The systematic FE-based study of non-circular silos 

enables the importance of this relative stiffness to be identified. 

Two apparently similar granular solids have shown somewhat different behaviour and this 

indicates that the values used in models need to incorporate parameters that distinguish these 

stiffness characteristics. 

The model presented for the prediction of pressure distribution shows that values of α, a 

simple expression to identify the pressure variation, give a good comparison to the data. 
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Notation 

A cross-section plan area  

a width of the long silo wall 

b width of the short silo wall 

b’ equivalent side length (Reimbert) 

dc characteristic diameter 

e initial voids ratio 

E modulus of elasticity 

h height of silo 

k  local ratio of horizontal wall pressure to mean vertical stress in solid 

K ratio of mean horizontal wall pressure to mean vertical stress in solid 

L Length of silo side 

t wall thickness 

p normal pressure against silo wall 

ph mean normal wall pressure 

po asymptotic wall pressure at great depth 

pel
t elastic tensile strength of stored material 

U wall circumference 

x horizontal distance from the wall centreline 

Z depth below surface 

Z0 maximum depth below surface 

 coefficient of pressure non-uniformity 

γ stored solid unit weight 

ψ angle of dilation 

κ log bulk modulus 

ν Poisson’s ratio 
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 wall friction coefficient 

φi  internal angle of friction 

σc initial yield stress of stored material 
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Table 1 Parameters required for constitutive law, the assumed values and the source of these 

values 

Parameter Leighton Buzzard 

sand  

(Lahlouh et al, 1995) 

Pea Gravel 

(Lahlouh et al, 

1995) 

Wheat 

(Ooi, 

1990) 

Logarithmic bulk modulus,  0.002 0.003 0.015 

Poisson’s ratio,  0.316 0.306 0.369 

Initial voids ratio, e 0.67 0.555 0.80 

Elastic tensile strength, Pel
t (kPa) 0  0 0 

Internal angle of wall friction, i 45.1 46.1 39.1 

Angle of dilation, ψ (°) 0 0 0 

Initial yield stress, c (kPa) 0.25 0.25 0.25 

Initial Bulk density,  (kg/m3) 1587 1704 761 

Coefficient of wall friction,  0.445 0.392 0.440 
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 Table 2 – Values of  for rectangular planform silos of different ratios; stored material 

Leighton Buzzard sand 

 

Wall 

Thickness 

(mm) 

1:1 1.1:1 

Short 

wall 

1.1:1 

Long 

wall 

1.3:1 

Short 

wall 

1.3:1 

Long 

wall 

1.5:1 

Short 

wall  

1.5:1 

Long 

wall 

2:1 

Short 

wall 

2:1 

Long 

wall 

20 1.79 1.78 2.01 1.64 2.39 1.61 2.46 1.05 2.62 

30 1.19 1.19 1.36 1.22 1.74 1.25 2.07 1.24 2.46 

50 0.63 0.62 0.72 0.67 0.97 0.71 1.23 0.87 1.83 

100 0.30 0.29 0.32 0.38 0.41 0.37 0.51 0.45 0.86 
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Figure 1 – Notation used for rectangular planform silos 
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Figure 2 - Pressure predictions from codes and Reimberts’ (R&R) design guides 

 

 



 23 

Figure 3 – View of finite element model 
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Figure 4 – Pressure predictions in rigid wall silos 
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Figure 5 – 2:1 Ratio flexible walls, sand fill 
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Figure 6 – Wall normal displacements at 5m depth in a 2:1 planform ratio bin 
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Figure 7a – Variation of pressure across walls 5m depth, 2:1 ratio, different t, sand fill 

 

 

 

 



 28 

 

 

Figure 7b – Variation of pressure across walls 5m depth, 2:1 ratio, different t, wheat fill 
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Figure 7c – Variation of pressure across walls 5m depth, 2:1 ratio, different t, gravel fill 
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Figure 8 – Different planform ratios, t=30mm, deviation from EN prediction 

 

 

 

 


