5 research outputs found

    Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite.

    Get PDF
    Recently we have demonstrated that sodium arsenite induces the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) protein and vascular endothelial growth factor (VEGF) in OVCAR-3 human ovarian cancer cells. We now show that arsenic trioxide, an experimental anticancer drug, exerts the same effects. The involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) pathways in the effects of sodium arsenite was investigated. By using kinase inhibitors in OVCAR-3 cells, both effects of sodium arsenite were found to be independent of phosphatidylinositol 3-kinase and p44/p42 MAPKS but were attenuated by inhibition of p38 MAPK. A role for p38 in the regulation of HIF-1alpha and VEGF expression was supported further by analysis of activation kinetics. Experiments in mouse fibroblast cell lines, lacking expression of c-Jun N-terminal kinases 1 and 2, suggested that these kinases are not required for induction of HIF-1alpha protein and VEGF mRNA. Unexpectedly, sodium arsenite did not activate a HIF-1-dependent reporter gene in OVCAR-3 cells, indicating that functional HIF-1 was not induced. In agreement with this hypothesis, up-regulation of VEGF mRNA was not reduced in HIF-1alpha(-/-) mouse fibroblast cell lines. Altogether, these data suggest that not HIF-1, but rather p38, mediates induction of VEGF mRNA expression by sodium arsenite

    Decision support tools for next-generation vaccines and advanced therapy medicinal products: present and future

    No full text
    Advanced Therapy Medicinal Products (ATMPs) are a novel class of biological therapeutics that utilise ground-breaking clinical interventions to prevent and treat life-threatening diseases. At the same time, viral vector-based and RNA-based platforms introduce a new generation of vaccine manufacturing processes. Their clinical success has led to an unprecedented rise in the demand that, for ATMPs, leads to a predicted market size of USD 9.6 billion by 2026. This paper discusses how mathematical models can serve as tools to assist decision-making in development, manufacturing and distribution of these new product classes. Recent contributions in the space of process, techno-economic and supply chain modelling are highlighted. Lastly, we present and discuss how Process Systems Engineering can be further advanced to support commercialisation of advanced therapeutics and vaccines

    Human in vitro models for understanding mechanisms of autism spectrum disorder

    No full text
    corecore