1,000 research outputs found

    Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Get PDF
    Background: The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL)-4 gene transfected fibroblasts. Methods: In University of Pittsburgh Cancer Institute (UPCI) protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM) or anaplastic astrocytoma (AA) received gross total resection (GTR) of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC) loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion: In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN)-γ Enzyme-Linked Immuno-SPOT (ELISPOT) assay in another human leukocyte antigen (HLA)-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA) epitope EphA2883-891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants received scheduled vaccinations with no incidence of major adverse events. Monocyte-derived DCs produced high levels of IL-12 p70. Treatment was well tolerated; however, we were unable to observe detectable IFN-γ post-vaccine responses or prolonged progression-free survival in these participants. Conclusion: Feasibility challenges inherent in the generation of a patient-specific gene transfection-based vaccine strongly suggests the need for more practical formulations that would allow for the timely administration of vaccines. Nevertheless, successful generation of type-1 DCs and preliminary safety in the current study provide a strong rationale for further efforts to develop novel glioma vaccines. © 2007 Okada et al; licensee BioMed Central Ltd

    Parascedosporium and its relatives: phylogeny and ecological trends

    Get PDF
    The genus Scedosporium and its relatives comprising microascalean anamorphs with slimy conidia were studied. Graphium and Parascedosporium also belong to this complex, while teleomorphs are found in Pseudallescheria, Petriella, Petriellopsis, and Lophotrichus. Species complexes were clearly resolved by rDNA ITS sequencing. Significantly different ecological trends were observed between resolved species aggregates. The Pseudallescheria and Scedosporium prolificans clades were the only lineages with a marked opportunistic potential to mammals, while Petriella species were associated primarily with soil enriched by, e.g. dung. A consistent association with bark beetles was observed in the Graphium clade. The ex-type strain of Rhinocladium lesnei, CBS 108.10 was incorrectly implicated by Vuillemin (1910) in a case of human mycetoma; its sequence was identical to that of the ex-type strain of Parascedosporium tectonae, CBS 127.84

    Fusion of Color Doppler and Magnetic Resonance Images of the Heart

    Get PDF
    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound)

    High Extracellular Ca2+ Stimulates Ca2+-Activated Cl− Currents in Frog Parathyroid Cells through the Mediation of Arachidonic Acid Cascade

    Get PDF
    Elevation of extracellular Ca2+ concentration induces intracellular Ca2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca2+ signaling in frog parathyroid cells and show that Ca2+-activated Cl− channels are activated by intracellular Ca2+ increase through an inositol 1,4,5-trisphophate (IP3)-independent pathway. High extracellular Ca2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC50∼6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca2+-induced and Ca2+ dialysis-induced currents reversed at the equilibrium potential of Cl− and were inhibited by niflumic acid (a specific blocker of Ca2+-activated Cl− channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca2+-induced current, suggesting the change of intracellular Cl− concentration in a few minutes. Extracellular Ca2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca2+-induced current. IP3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca2+-induced conductance. These results indicate that high extracellular Ca2+ raises intracellular Ca2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl− conductance

    Association of a rare variant of the TNFSF13B gene with susceptibility to Rheumatoid Arthritis and Systemic Lupus Erythematosus

    Get PDF
    Abstract: A rare variant (BAFF-var) of the tumor necrosis factor superfamily 13b (TNFSF13B) gene has been recently associated with multiple sclerosis (MS) and systemic lupus erythematosus (SLE). The aim of this study was to investigate the association between TNFSF13B BAFF-var and susceptibility to rheumatoid arthritis (RA) and replicate that association in SLE. 6,218 RA patients, 2,575 SLE patients and 4,403 healthy controls from three different countries were included in the study. TNFSF13B BAFF-var was genotyped using TaqMan allelic discrimination assay. PLINK software was used for statistical analyses. TNFSF13B BAFF-var was significantly associated with RA (p = 0.015, OR = 1.21, 95% CI = 1.03–1.41) in the Spanish cohort. A trend of association was observed in the Dutch (p = 0.115) and German (p = 0.228) RA cohorts. A meta-analysis of the three RA cohorts included in this study revealed a statistically significant association (p = 0.002, OR = 1.24, 95% CI = 1.10–1.38). In addition, TNFSF13B BAFF-var was significantly associated with SLE in the Spanish (p = 0.001, OR = 1.41, 95% CI = 1.14–1.74) and the German cohorts (p = 0.030, OR = 1.86, 95% CI = 1.05–3.28), with a statistically significant p-value obtained in the meta-analysis (p = 0.0002, OR = 1.46, 95% CI = 1.09–2.32). The results obtained confirm the known association of TNFSF13B BAFF-var with SLE and, for the first time, demonstrate that this variant contributes to susceptibility to RA.This work was supported by the following grants: P12-BIO-1395 from Consejería de Innovación, Ciencia y Tecnología, Junta de Andalucía (Spain), and the Cooperative Research Thematic Network (RETICS) program, RD16/0012/0004 (RIER), from Instituto de Salud Carlos III (ISCIII, Health Ministry, Madrid, Spain). DGS was supported by the Spanish Ministry of Economy and Competitiveness through the program FPI (SAF2015-66761-P)

    Diffusion of Myosin V on Microtubules: A Fine-Tuned Interaction for Which E-Hooks Are Dispensable

    Get PDF
    Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes

    Recovery in Stroke Rehabilitation through the Rotation of Preferred Directions Induced by Bimanual Movements: A Computational Study

    Get PDF
    Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a damaged motor cortex because this movement induces rotations in the preferred directions (PDs) of motor cortex neurons. Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this movement rotates the encoding PDs of motor cortex neurons

    Purinergic inhibition of Na+,K+,Cl− cotransport in C11-MDCK cells: Role of stress-activated protein kinases

    Get PDF
    Previously, we observed that sustained activation of P2Y1 leads to inhibition of Na+,K+,Cl− cotransport (NKCC) in C11 cells resembling intercalated cells from collecting ducts of the Madin-Darby canine kidney. This study examined the role of stress-activated protein kinases (SAPK) in NKCC inhibition triggered by purinergic receptors. Treatment of C11 cells with ATP led to sustained phosphorylation of SAPK such as JNK and p38. Activation of these kinases also occurred in anisomycin-treated cells. Surprisingly, we observed that compounds SP600125 and SB202190, known as potent inhibitors of JNK and p38 in cell-free systems, activated rather than inhibited phosphorylation of the kinases in C11 cells. Importantly, similarly to ATP, all the above-listed activators of JNK and p38 phosphorylation inhibited NKCC. Thus, our results suggest that activation of JNK and/or p38 contributes to NKCC suppression detected in intercalated-like cells from distal tubules after their exposure to P2Y1 agonists

    A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons

    Get PDF
    Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure

    Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarcoma cells

    Get PDF
    We isolated six clones of weakly tumorigenic fibrosarcoma (QR) from the tumorigenic clone BMT-11 cl-9. The QR clones were unable to grow in normal C57BL/6 mice when injected s.c. (1 × 105 cells). However, they formed aggressive tumours upon co-implantation with a ‘foreign body’, i.e. a gelatin sponge, and the rate of tumour take ranged from 8% to 58% among QR clones. The enhanced tumorigenicity was due to host cell-mediated reaction to the gelatin sponge (inflammation). Immunoblot analysis and enzyme activity assay revealed a significant inverse correlation between the frequencies of tumour formation by QR clones and the levels of manganese superoxide dismutase (Mn-SOD, P<0.005) and glutathione peroxidase (GPχ, P<0.01) in the respective tumour clones. Electron spin resonance (ESR) revealed that superoxide-scavenging ability of cell lysates of the QR clone with high level of Mn-SOD was significantly higher than that with low level of the antioxidative enzyme in the presence of potassium cyanide, an inhibitor for copper–zinc superoxide dismutase (CuZn-SOD) (P<0.001). Minisatellite mutation (MSM) induced by the inflammatory cells in tumour cells were investigated by DNA fingerprint analysis after QR clones had been co-cultured with gelatin-sponge-reactive cells. The MSM rate was significantly higher in the subclones with low levels of Mn-SOD and GPχ (P<0.05) than in the subclones with high levels of both enzymes. The MSM of the subclones with low levels of both enzymes was inhibited in the presence of mannitol, a hydroxyl radical scavenger. The content of 8-hydroxydeoxyguanosine (8-OHdG) by which the cellular DNA damage caused by active oxygen species can be assessed was significantly low in the tumours arising from the QR clone with high levels of Mn-SOD and GPχ even if the clone had been co-implanted with gelatin sponge, compared with the arising tumour from the QR clone with low levels of those antioxidative enzymes (P<0.001). In contrast, CuZn-SOD and catalase levels in the six QR clones did not have any correlation with tumour progression parameters. These results suggest that tumour progression is accelerated by inflammation-induced active oxygen species particularly accompanied with declined levels of intracellular antioxidative enzymes in tumour cells. © 1999 Cancer Research Campaig
    corecore