5,467 research outputs found
Tests of the Gravitational Inverse-Square Law
We review recent experimental tests of the gravitational inverse-square law
and the wide variety of theoretical considerations that suggest the law may
break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of
Nuclear and Particle Science. Final version of this material is scheduled to
appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be
published in December 2003 by Annual Reviews, http://AnnualReviews.or
Recommended from our members
Regulation of sensory nerve conduction velocity (SCV) of human bodies responding to annual temperature variations in natural environments
The extensive research interests in environmental temperature can be linked to human productivity/performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature-sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S-shaped trend of SCV with operative temperatures from 5 °C to 40 °C. The SCV increased linearly with operative temperatures from 14.28 °C to 20.5 °C and responded sensitively for 10.19 °C - 24.59 °C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature-invoked risks to human health and well-being
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events
that can be non-exponentially distributed. Within parametric ACTMCs, the
parameters of alarm-event distributions are not given explicitly and can be
subject of parameter synthesis. An algorithm solving the -optimal
parameter synthesis problem for parametric ACTMCs with long-run average
optimization objectives is presented. Our approach is based on reduction of the
problem to finding long-run average optimal strategies in semi-Markov decision
processes (semi-MDPs) and sufficient discretization of parameter (i.e., action)
space. Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction fails to
solve even simple instances of the problem. The presented algorithm uses an
enhanced policy iteration on symbolic representations of the action space. The
soundness of the algorithm is established for parametric ACTMCs with
alarm-event distributions satisfying four mild assumptions that are shown to
hold for uniform, Dirac and Weibull distributions in particular, but are
satisfied for many other distributions as well. An experimental implementation
shows that the symbolic technique substantially improves the efficiency of the
synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference
on Quantitative Evaluation of SysTems (QEST) 201
Simulation-based analysis of micro-robots swimming at the center and near the wall of circular mini-channels
Swimming micro robots have great potential in biomedical applications such as targeted drug delivery, medical diagnosis, and destroying blood clots in arteries. Inspired by swimming micro organisms, micro robots can move in biofluids with helical tails attached to their bodies. In order to design and navigate micro robots, hydrodynamic characteristics of the flow field must be understood well. This work presents computational fluid dynamics (CFD) modeling and analysis of the flow due to the motion of micro robots that consist of magnetic heads and helical tails inside fluid-filled channels akin to bodily conduits; special emphasis is on the effects of the radial position of the robot. Time-averaged velocities, forces, torques, and efficiency of the micro robots placed in the channels are analyzed as functions of rotation frequency, helical pitch (wavelength) and helical radius (amplitude) of the tail. Results indicate that robots move faster and more efficiently near the wall than at the center of the channel. Forces acting on micro robots are asymmetrical due to the chirality of the robot’s tail and its motion. Moreover, robots placed near the wall have a different flow pattern around the head when compared to in-center and unbounded swimmers. According to simulation results, time-averaged for-ward velocity of the robot agrees well with the experimental values measured previously for a robot with almost the same dimensions
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
Associations between birth size and later height from infancy through adulthood : an individual based pooled analysis of 28 twin cohorts participating in the CODATwins project
Background: There is evidence that birth size is positively associated with height in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment.
Aim: To analyze the associations of birth weight, length and ponderal index with height from infancy through adulthood within mono- and dizygotic twin pairs, which provides insights into the role of genetic and environmental individual-specific factors.
Methods: This study is based on the data from 28 twin cohorts in 17 countries. The pooled data included 41,852 complete twin pairs (55% monozygotic and 45% same-sex dizygotic) with information on birth weight and a total of 112,409 paired height measurements at ages ranging from 1 to 69 years. Birth length was available for 19,881 complete twin pairs, with a total of 72,692 paired height measurements. The association between birth size and later height was analyzed at both the individual and within-pair level by linear regression analyses.
Results: Within twin pairs, regression coefficients showed that a 1-kg increase in birth weight and a 1-cm increase in birth length were associated with 1.14-4.25 cm and 0.18-0.90 cm taller height, respectively. The magnitude of the associations was generally greater within dizygotic than within monozygotic twin pairs, and this difference between zygosities was more pronounced for birth length.
Conclusion: Both genetic and individual-specific environmental factors play a role in the association between birth size and later height from infancy to adulthood, with a larger role for genetics in the association with birth length than with birth weight
Walks4work: Rationale and study design to investigate walking at lunchtime in the workplace setting
Background: Following recruitment of a private sector company, an 8week lunchtime walking intervention was implemented to examine the effect of the intervention on modifiable cardiovascular disease risk factors, and further to see if walking environment had any further effect on the cardiovascular disease risk factors. Methods. For phase 1 of the study participants were divided into three groups, two lunchtime walking intervention groups to walk around either an urban or natural environment twice a week during their lunch break over an 8week period. The third group was a waiting-list control who would be invited to join the walking groups after phase 1. In phase 2 all participants were encouraged to walk during their lunch break on self-selecting routes. Health checks were completed at baseline, end of phase 1 and end of phase 2 in order to measure the impact of the intervention on cardiovascular disease risk. The primary outcome variables of heart rate and heart rate variability were measured to assess autonomic function associated with cardiovascular disease. Secondary outcome variables (Body mass index, blood pressure, fitness, autonomic response to a stressor) related to cardiovascular disease were also measured. The efficacy of the intervention in increasing physical activity was objectively monitored throughout the 8-weeks using an accelerometer device. Discussion. The results of this study will help in developing interventions with low researcher input with high participant output that may be implemented in the workplace. If effective, this study will highlight the contribution that natural environments can make in the reduction of modifiable cardiovascular disease risk factors within the workplace. © 2012 Brown et al.; licensee BioMed Central Ltd
Marginalization of end-use technologies in energy innovation for climate protection
Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies
Phosphorus recovery from anaerobically digested liquor of screenings
Phosphorus is a limited resource which is predicted to get exhausted at some point during the twenty-first century. However, it is present in wastewaters at concentrations that come close to supplying the nation’s annual requirements for fertiliser. Many papers have addressed the recovery of phosphorus as struvite (magnesium ammonium phosphate hexahydrate) from different types of waste while the most prominent usage of struvite is as a slow-release fertiliser, suitable as a replacement for chemical fertiliser, for agricultural application. In this study, screenings produced during the wastewater treatment process were anaerobically digested to obtain anaerobically digested liquor which was subsequently used for phosphorus recovery in the form of struvite. This was carried out at different concentrations of dry solids. The amount of struvite potential was calculated theoretically using molar ratio calculations of 1:1:1 (Mg:N:P). From the results, it was found that the digestate is high in phosphorus content and can be recovered up to 41%. For struvite yield, 0.27,kg of struvite can be recovered from each kg dry solids of screenings from 3% of dry solids. Screenings thus prove a valuable source of additional phosphorus which current disposal practices fail to exploit
Study of the Decays B0 --> D(*)+D(*)-
The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7
million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine
Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4
and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the
first angular analysis of the B0 --> D*+D*- decay and determine that the
CP-even fraction of the final state is greater than 0.11 at 90% CL. Future
measurements of the time dependence of these decays may be useful for the
investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.
- …
