82 research outputs found

    Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus: systematics and evolutionary significance

    Get PDF
    Modern hydrothermal vent communities are based on chemosynthesis by microbial primary producers. Molecular phylogenetic divergence estimates indicate that many of the dominant vent taxa arose during the Cenozoic and Cretaceous; however, the fossil record of vent communities from these time periods is poor. One occurrence of such Cretaceous vent communities pertains to six volcanogenic massive sulphide deposits in the Troodos ophiolite of Cyprus. These deposits represent hydrothermal activity on deep (2500–5000 m) arc-related spreading ridge(s) in the Neotethyan Ocean over several million years during the late Cenomanian and earliest Turonian. The Cyprus vent communities consist of worm tubes, representing possible vestimentiferans and serpulids, together with a moderate diversity of abyssochrysoid gastropods, belonging to eight new species (Desbruyeresia kinousaensis sp. nov., Desbruyeresia memiensis sp. nov., Desbruyeresia kambiaensis sp. nov., Hokkaidoconcha morisseaui sp. nov., Ascheria canni sp. nov., Cyprioconcha robertsoni gen. et sp. nov., Paskentana xenophontosi sp. nov. and Paskentana dixoni sp. nov.) in five genera and three families; none of the species is shared between vent sites. A single gaudryceratid ammonite from one of the vent sites most likely represents a water-logged shell that sank from surface waters. The gastropod fauna contains the first representatives of the genera Desbruyeresia, Hokkaidoconcha, Ascheria and Paskentana from hydrothermal vents, and also the youngest representative of the last-named genus in any environment. The Cypriot vent communities share tube worms with slightly older (Cenomanian) and younger (Turonian–Santonian) vent communities elsewhere in the western part of the Neotethyan Ocean

    Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    Get PDF
    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases

    Cell morphology governs directional control in swimming bacteria

    Get PDF
    The ability to rapidly detect and track nutrient gradients is key to the ecological success of motile bacteria in aquatic systems. Consequently, bacteria have evolved a number of chemotactic strategies that consist of sequences of straight runs and reorientations. Theoretically, both phases are affected by fluid drag and Brownian motion, which are themselves governed by cell geometry. Here, we experimentally explore the effect of cell length on control of swimming direction. We subjected Escherichia coli to an antibiotic to obtain motile cells of different lengths, and characterized their swimming patterns in a homogeneous medium. As cells elongated, angles between runs became smaller, forcing a change from a run-and-tumble to a run-and-stop/reverse pattern. Our results show that changes in the motility pattern of microorganisms can be induced by simple morphological variation, and raise the possibility that changes in swimming pattern may be triggered by both morphological plasticity and selection on morphology

    Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    Get PDF
    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease

    Anion-Sensitive Regions of L-Type CaV1.2 Calcium Channels Expressed in HEK293 Cells

    Get PDF
    L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Aquaponics: closing the cycle on limited water, land and nutrient resources

    Get PDF
    Hydroponics initially developed in arid regions in response to freshwater shortages, while in areas with poor soil, it was viewed as an opportunity to increase productivity with fewer fertilizer inputs. In the 1950s, recirculating aquaculture also emerged in response to similar water limitations in arid regions in order to make better use of available water resources and better contain wastes. However, disposal of sludge from such systems remained problematic, thus leading to the advent of aquaponics, wherein the recycling of nutrients produced by fish as fertilizer for plants proved to be an innovative solution to waste discharge that also had economic advantages by producing a second marketable product. Aquaponics was also shown to be an adaptable and cost-effective technology given that farms could be situated in areas that are otherwise unsuitable for agriculture, for instance, on rooftops and on unused, derelict factory sites. A wide range of cost savings could be achieved through strategic placement of aquaponics sites to reduce land acquisition costs, and by also allowing farming closer to suburban and urban areas, thus reducing transportation costs to markets and hence also the fossil fuel and CO2 footprints of production

    Effects of second-generation and indoor sports surfaces on knee joint kinetics and kinematics during 45° and 180° cutting manoeuvres, and exploration using statistical parametric mapping and Bayesian analyses

    Get PDF
    Purpose: The aim of the current investigation was to examine the influence of second generation (2G) and indoor surfaces on knee joint kinetics, kinematics, frictional and muscle force parameters during 45° and 180° change of direction movements using statistical parametric mapping (SPM) and Bayesian analyses. Methods: Twenty male participants performed 45° and 180° change of direction movements on 2G and indoor surfaces. Lower limb kinematics were collected using an eight-camera motion capture system and ground reaction forces were quantified using an embedded force platform. ACL, patellar tendon and patellofemoral loading was examined via a musculoskeletal modelling approaches and the frictional properties of the surfaces were examined using ground reaction force information. Differences between surfaces were examined using SPM and Bayesian analyses. Results: Both SPM and Bayesian analyses showed that ACL loading parameters were greater in the 2G condition in relation to the indoor surface. Conversely, SPM and Bayesian analyses confirmed that patellofemoral/ patellar tendon loading alongside the coefficient of friction and peak rotational moment were larger in the indoor condition compared to the 2G surface. Conclusions: This study indicates that the indoor surface may improve change of direction performance owing to enhanced friction at the shoe-surface interface but augment the risk from patellar tendon/ patellofemoral injuries; whereas the 2G condition may enhance the risk from ACL pathologies
    • …
    corecore