176 research outputs found

    Establishment of a Replicating Plasmid in Rickettsia prowazekii

    Get PDF
    Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen

    Exploitation of Herpesviral Transactivation Allows Quantitative Reporter Gene-Based Assessment of Virus Entry and Neutralization

    Get PDF
    Herpesviral entry is a highly elaborated process requiring many proteins to act in precise conjunction. Neutralizing antibodies interfere with this process to abrogate viral infection. Based on promoter transactivation of a reporter gene we established a novel method to quantify herpesvirus entry and neutralization by antibodies. Following infection with mouse and human cytomegalovirus and Herpes simplex virus 1 we observed promoter transactivation resulting in substantial luciferase expression (>1000-fold). No induction was elicited by UV-inactivated viruses. The response was MOI-dependent and immunoblots confirmed a correlation between luciferase induction and pp72-IE1 expression. Monoclonal antibodies, immune sera and purified immunoglobulin preparations decreased virus-dependent luciferase induction dose-dependently, qualifying this approach as surrogate virus neutralization test. Besides the reduced hands-on time, this assay allows analysis of herpesvirus entry in semi-permissive and non-adherent cells, which were previously non-assessable but play significant roles in herpesvirus pathology

    Functional Promoter Polymorphisms Govern Differential Expression of HMG-CoA Reductase Gene in Mouse Models of Essential Hypertension

    Get PDF
    3-Hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase gene (Hmgcr) is a susceptibility gene for essential hypertension. Sequencing of the Hmgcr locus in genetically hypertensive BPH (blood pressure high), genetically hypotensive BPL (blood pressure low) and genetically normotensive BPN (blood pressure normal) mice yielded a number of single nucleotide polymorphisms (SNPs). BPH/BPL/BPN Hmgcr promoter-luciferase reporter constructs were generated and transfected into liver HepG2, ovarian CHO, kidney HEK-293 and neuronal N2A cells for functional characterization of the promoter SNPs. The BPH-Hmgcr promoter showed significantly less activity than the BPL-Hmgcr promoter under basal as well as nicotine/cholesterol-treated conditions. This finding was consistent with lower endogenous Hmgcr expression in liver and lower plasma cholesterol in BPH mice. Transfection experiments using 5′-promoter deletion constructs (strategically made to assess the functional significance of each promoter SNP) and computational analysis predicted lower binding affinities of transcription factors c-Fos, n-Myc and Max with the BPH-promoter as compared to the BPL-promoter. Corroboratively, the BPH promoter-luciferase reporter construct co-transfected with expression plasmids of these transcription factors displayed less pronounced augmentation of luciferase activity than the BPL construct, particularly at lower amounts of transcription factor plasmids. Electrophoretic mobility shift assays also showed diminished interactions of the BPH promoter with HepG2 nuclear proteins. Taken together, this study provides mechanistic basis for the differential Hmgcr expression in these mouse models of human essential hypertension and have implications for better understanding the role of this gene in regulation of blood pressure

    Influence of Uranium on Bacterial Communities: A Comparison of Natural Uranium-Rich Soils with Controls

    Get PDF
    This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil

    Morphological docking of secretory vesicles

    Get PDF
    Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses

    Neuropsychological effects of chronic low-dose exposure to polychlorinated biphenyls (PCBs): A cross-sectional study

    Get PDF
    BACKGROUND: Exposure to indoor air of private or public buildings contaminated with polychlorinated biphenyls (PCBs) has raised health concerns in long-term users. This exploratory neuropsychological group study investigated the potential adverse effects of chronic low-dose exposure to specific air-borne low chlorinated PCBs on well-being and behavioral measures in adult humans. METHODS: Thirty employees exposed to indoor air contaminated with PCBs from elastic sealants in a school building were compared to 30 non-exposed controls matched for education and age, controlling for gender (age range 37–61 years). PCB exposure was verified by external exposure data and biological monitoring (PCB 28, 101, 138, 153, 180). Subjective complaints, learning and memory, executive function, and visual-spatial function was assessed by standardized neuropsychological testing. Since exposure status depended on the use of contaminated rooms, an objectively exposed subgroup (N = 16; PCB 28 = 0.20 μg/l; weighted exposure duration 17.9 ± 7 years) was identified and compared with 16 paired controls. RESULTS: Blood analyses indicated a moderate exposure effect size (d) relative to expected background exposure for total PCB (4.45 ± 2.44 μg/l; d = 0.4). A significant exposure effect was found for the low chlorinated PCBs 28 (0.28 ± 0.25 μg/l; d = 1.5) and 101 (0.07 ± 0.09 μg/l; d = 0.7). Although no neuropsychological effects exceeded the adjusted significance level, estimation statistics showed elevated effect sizes for several variables. The objectively exposed subgroup showed a trend towards increased subjective attentional and emotional complaints (tiredness and slowing of practical activities, emotional state) as well as attenuated attentional performance (response shifting and alertness in a cued reaction task). CONCLUSION: Chronic inhalation of low chlorinated PCBs that involved elevated blood levels was associated with a subtle attenuation of emotional well-being and attentional function. Extended research is needed to replicate the potential long-term low PCB effects in a larger sample
    corecore