240 research outputs found

    Inference in Ecology: The Sea Urchin Phenomenon in the Northwestern Atlantic

    Get PDF
    We have reviewed the considerable body of research into the sea urchin phenomenon responsible for the alternation between macroalgal beds and coralline barrens in the northwestern Atlantic. In doing so, we have identified problems with both the scientific approach and the interpretation of results. Over a period of approximately 20 years, explanations for the phenomenon invoked four separate scenarios, which changed mainly as a consequence of extraneous events rather than experimental testing. Our specific concerns are that results contrary to the keystone-predator paradigm for the American lobster were circumvented, system components of the various scenarios became accepted without testing, and modifications of some components appeared arbitrary. Our review illustrates dilemmas that, we suggest, have hindered ecological progress in general. We argue for a more rigorous experimental approach, based on sound natural-history observations and strong inference. Moreover, we believe that the scientific community needs to be cautious about allowing paradigms to become established without adequate scrutiny

    Toll-Like Receptor 4 (TLR4) of Retinal Pigment Epithelial Cells Participates in Transmembrane Signaling in Response to Photoreceptor Outer Segments

    Get PDF
    Retinal pigment epithelial (RPE) cells mediate the recognition and clearance of effete photoreceptor outer segments (POS), a process central to the maintenance of normal vision. Given the emerging importance of Toll-like receptors (TLRs) in transmembrane signaling in response to invading pathogens as well as endogenous substances, we hypothesized that TLRs are associated with RPE cell management of POS. TLR4 clusters on human RPE cells in response to human, but not bovine, POS. However, TLR4 clustering could be inhibited by saturating concentrations of an inhibitory anti-TLR4 mAb. Furthermore, human POS binding to human RPE cells elicited transmembrane metabolic and calcium signals within RPE cells, which could be blocked by saturating doses of an inhibitory anti-TLR4 mAb. However, the heterologous combination of bovine POS and human RPE did not trigger these signals. The pattern recognition receptor CD36 collected at the POS–RPE cell interface for both homologous and heterologous samples, but human TLR4 only collected at the human POS–human RPE cell interface. Kinetic experiments of human POS binding to human RPE cells revealed that CD36 arrives at the POS–RPE interface followed by TLR4 accumulation within 2 min. Metabolic and calcium signals immediately follow. Similarly, the production of reactive oxygen metabolites (ROMs) was observed for the homologous human system, but not the heterologous bovine POS–human RPE cell system. As (a) the bovine POS/human RPE combination did not elicit TLR4 accumulation, RPE signaling, or ROM release, (b) TLR4 arrives at the POS–RPE cell interface just before signaling, (c) TLR4 blockade with an inhibitory anti-TLR4 mAb inhibited TLR4 clustering, signaling, and ROM release in the human POS–human RPE system, and (d) TLR4 demonstrates similar clustering and signaling responses to POS in confluent RPE monolayers, we suggest that TLR4 of RPE cells participates in transmembrane signaling events that contribute to the management of human POS

    Tumor cell invasion of model 3‐dimensional matrices: demonstration of migratory pathways, collagen disruption, and intercellular cooperation

    Full text link
    We report a novel 3‐dimensional model for visualizing tumor cell migration across a nylon mesh‐supported gelatin matrix. To visualize migration across these model barriers, cell proteolytic activity of the pericellular matrix was detected using Bodipy‐BSA (fluorescent upon proteolysis) and DQ™ collagen (fluorescent upon collagenase activity). For 3‐dimensional image reconstruction, multiple optical images at sequential z axis positions were deconvoluted by computer analysis. Specificity was indicated using well‐known inhibitors. Using these fluorescent proteolysis markers and imaging methods, we have directly demonstrated proteolytic and collagenolytic activity during tumor cell invasion. Moreover, it is possible to visualize migratory pathways followed by tumor cells during matrix invasion. Using cells of differing invasive potentials (uPAR‐negative T‐47D wild‐type and uPAR‐positive T‐47D A2–1 cells), we show that the presence of the T‐47D‐A2–1 cells facilitates the entry of T‐47D wild‐type cells into the matrix. In some cases, wild‐type cells follow T‐47D A2–1 cells into the matrix whereas other T‐47D‐wild‐type cells appear to enter without the direct intervention of T‐47D A2–1 cells. Thus, we have developed a new 3‐dimensional model of tumor cell invasion, demonstrated protein and collagen disruption, mapped the pathways followed by tumor cells during migration through an extracellular matrix, and illustrated cross‐talk among tumor cell populations during invasion.—Horino, K., Kindezelskii, A. L., Elner, V. M., Hughes, B. A., Petty, H. R. Tumor cell invasion of model 3‐dimensional matrices: demonstration of migratory pathways, collagen disruption, and intercellular cooperation. FASEB J. 15, 932–939 (2001)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154275/1/fsb2fj000392com.pd

    Early subretinal allograft rejection is characterized by innate immune activity

    Get PDF
    Successful subretinal transplantation is limited by considerable early graft loss, despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a non-immunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation and the neutrophil chemoattractant, KC/GRO/CINC, was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, non-immunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7 and 28 days post-operatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b & F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-Îľ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p<0.001) reduced between post-operative day (POD) 3 (90% Âą 4%) and POD 7 (20% Âą 7%). CD11b+, F4/80+ and Gr1 Ly-6G+ cells increased significantly (p<0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Co-labeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7 and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-Îľ was low and did not differ significantly between time-points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal for the first time a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response

    Transcriptomic Analysis of Human Retinal Detachment Reveals Both Inflammatory Response and Photoreceptor Death

    Get PDF
    Background Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. Methodology/Principal Findings Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. Conclusions/Significance This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery

    A selective cyclic integrin antagonist blocks the integrin receptors ι(v)β(3 )and ι(v)β(5 )and inhibits retinal pigment epithelium cell attachment, migration and invasion

    Get PDF
    BACKGROUND: Proliferative vitreoretinopathy (PVR) is a leading cause of blindness after failed retinal reattachment surgery. PVR is characterized by the proliferation, migration and contraction of retinal pigmented epithelial cells (RPE), and these cellular responses are influenced by the expression and function of integrin receptors. The effect of a cyclic integrin antagonist containing the amino acid sequence Arg-Gly-Asp-D-Phe-Val (RGDfV), specific for the integrin receptors α(v)β(3 )and α(v)β(5), was investigated on basic fibroblast growth factor (bFGF), platelet derived growth factor-BB (PDGF-BB), and serum induced human RPE proliferation, migration, invasion and attachment to the extracellular matrix. Furthermore, the effects of bFGF and PDGF-BB regulated expression of integrins α(v)β(3 )and α(v)β(5 )on RPE cells was examined. METHODS: The effect of a cyclic integrin antagonist and a control peptide (0.01 μg/ml to 300 μg/ml) was investigated on serum or cytokine (bFGF or PDGF-BB pretreatment) induced human fetal RPE cell proliferation by H(3)-thymidine uptake. The effect of the cyclic integrin antagonist on RPE cell attachment onto different extracellular matrices (laminin, collagen IV, fibronectin), RPE cell invasion stimulated by PDGF-BB or serum, and migration stimulated by PDGF-BB, vascular endothelial growth factor (VEGF) or serum was explored. PDGF-BB and bFGF modulation of the integrin receptors α(v)β(3 )and α(v)β(5 )was evaluated by flow cytometry. RESULTS: The integrin antagonist did not inhibit DNA synthesis stimulated by serum, bFGF, or PDGF-BB treatment. RPE attachment onto fibronectin was inhibited in a concentration range of 1–10 μg/ml (p < 0.05). Attachment of the RPE cells onto collagen IV and laminin was inhibited in a range of 3–10 μg/ml (p < 0.05). Serum and PDGF-BB stimulated migration was inhibited by the cyclic integrin antagonist in a concentration range of 1–10 μg/ml (p < 0.05). Furthermore, the cyclic integrin antagonist inhibited PDGF-BB stimulated RPE cell invasion through fibronectin (3μg/ml: 66% inhibition, p < 0.001). In each of these experiments, the control peptides had no significant effects. PDGF-BB and bFGF pretreatment of RPE cells increased the expression of integrin receptors α(v)β(3 )(bFGF: 1.9 fold, PDGF-BB: 2.3 fold) and α(v)β(5 )(bFGF: 2.9 fold, PDGF-BB: 1.5 fold). CONCLUSION: A selective inhibition of the integrin receptors α(v)β(3 )and α(v)β(5 )through a cyclic integrin antagonist is able to inhibit RPE cell attachment, migration and invasion. Since these steps are of importance for the progression of PVR, a cyclic integrin antagonist should be further evaluated for the treatment of this disease

    Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach

    Get PDF
    The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere–ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change
    • …
    corecore