138 research outputs found

    EFEITOS In Vitro da Triiodotironina (t3) na Diferenciação Condrogênica das Células Tronco Mesenquimais do Tecido Adiposo de Ratas

    Get PDF
    As células-tronco mesenquimais do tecido adiposo (CTM-TA) são células com alta capacidade de diferenciação, inclusive condrogênica e existem protocolos bem definidos para que essa diferenciação ocorra in vitro. No entanto, ainda não existem estudos verificando o efeito dos hormônios tireoidianos sobre o potencial condrogênico das CTM-TA. O que se sabe é que essas células apresentam receptores para hormônios tireoidianos. O objetivo do presente trabalho foi verificar o efeito in vitro da triiodotironina (T3) na diferenciação condrogênica de CTM-TA de ratas, durante vários períodos e em várias doses. Foram coletadas CTM-TA de ratas Wistar, que expressaram CD54, CD73 e CD90 e foram cultivadas em meio condrogênico com ou sem T3. Constitui-se cinco grupos: 1) CTM-TA sem T3; e 2,3,4,5) CTM-TA com T3 (0,01; 1; 100 e 1000 nM, respectivamente). Foram avaliados aos sete, 14 e 21 dias: morfologia celular, formação de matriz condrogênica e expressão de Sox9 e colágeno II, e colágeno X aos 21 dias. Para as análises foi utilizado o teste de Student Newman Keuls ou o teste de Kruskal-Wallis acompanhado do teste post hoc de Dunn. A dose de 1000 nM aparentemente induziu um aumento celular precoce aos 7 dias de diferenciação. O tratamento hormonal não alterou a formação de matriz condrogênica e a expressão de Sox9 aos 14 e 21 dias e expressão dos colágenos II e X em nenhum dos períodos avaliados. No entanto, as doses de 0,01; 1 e 1000 nM T3 diminuíram a expressão de Sox9 aos 7 dias. Conclui-se que o T3 não interfere na diferenciação condrogênica das CTM-TA de ratas, pois, apesar de induzir um aumento celular precoce e diminuir a expressão de Sox9 de forma dose dependente em pelo menos um dos períodos avaliados, não altera a formação de matriz condrogênica, nem a expressão de colágenos II e X em todos os períodos avaliados

    Halogenase Genes in Nonribosomal Peptide Synthetase Gene Clusters of Microcystis (Cyanobacteria): Sporadic Distribution and Evolution

    Get PDF
    Cyanobacteria of the genus Microcystis are known to produce secondary metabolites of large structural diversity by nonribosomal peptide synthetase (NRPS) pathways. For a number of such compounds, halogenated congeners have been reported along with nonhalogenated ones. In the present study, chlorinated cyanopeptolin- and/or aeruginosin-type peptides were detected by mass spectrometry in 17 out of 28 axenic strains of Microcystis. In these strains, a halogenase gene was identified between 2 genes coding for NRPS modules in respective gene clusters, whereas it was consistently absent when the strains produced only nonchlorinated corresponding congeners. Nucleotide sequences were obtained for 12 complete halogenase genes and 14 intermodule regions of gene clusters lacking a halogenase gene or containing only fragments of it. When a halogenase gene was found absent, a specific, identical excision pattern was observed for both synthetase gene clusters in most strains. A phylogenetic analysis including other bacterial halogenases showed that the NRPS-related halogenases of Microcystis form a monophyletic group divided into 2 subgroups, corresponding to either the cyanopeptolin or the aeruginosin peptide synthetases. The distribution of these peptide synthetase gene clusters, among the tested Microcystis strains, was found in relative agreement with their phylogeny reconstructed from 16S–23S rDNA intergenic spacer sequences, whereas the distribution of the associated halogenase genes appears to be sporadic. The presented data suggest that in cyanobacteria these prevalent halogenase genes originated from an ancient horizontal gene transfer followed by duplication in the cyanobacterial lineage. We propose an evolutionary scenario implying repeated gene losses to explain the distribution of halogenase genes in 2 NRPS gene clusters that subsequently defines the seemingly erratic production of halogenated and nonhalogenated aeruginosins and cyanopeptolins among Microcystis strains

    Physiological responses to low-force work and psychosocial stress in women with chronic trapezius myalgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repetitive and stressful work tasks have been linked to the development of pain in the trapezius muscle, although the underlying mechanisms still remain unclear. In earlier studies, it has been hypothesized that chronic muscle pain conditions are associated with imbalance in the autonomic nervous system, predominantly expressed as an increased sympathetic activity. This study investigates whether women with chronic trapezius myalgia show higher muscle activity and increased sympathetic tone at baseline and during repetitive low-force work and psychosocial stress, compared with pain-free controls.</p> <p>Methods</p> <p>Eighteen women with chronic trapezius myalgia (MYA) and 30 healthy female controls (CON) were studied during baseline rest, 100 min of repetitive low-force work, 20 min of psychosocial stress (Trier Social Stress Test, TSST), and 80 min recovery. The subjects rated their pain intensity, stress and energy level every 20 min throughout the experiment. Muscle activity was measured by surface electromyography in the trapezius muscle (EMGtrap) and deltoid muscle (EMGdelt). Autonomic reactivity was measured through heart rate (HR), skin conductance (SCL), blood pressure (MAP) and respiration rate (Resp).</p> <p>Results</p> <p>At baseline, EMGtrap, stress ratings, and HR were higher in MYA than in CON. Energy ratings, EMGdelt, SCL, MAP and Resp were, however, similar in the two groups. Significant main group effects were found for pain intensity, stress ratings and EMGtrap. Deltoid muscle activity and autonomic responses were almost identical in MYA and CON during work, stress and recovery. In MYA only, pain intensity and stress ratings increased towards the end of the repetitive work.</p> <p>Conclusion</p> <p>We found increased muscle activity during uninstructed rest in the painful muscle of a group of women with trapezius myalgia. The present study could not confirm the hypothesis that chronic trapezius myalgia is associated with increased sympathetic activity. The suggestion of autonomic imbalance in patients with chronic local or regional musculoskeletal pain needs to be further investigated.</p

    Dietary Essential Amino Acids Affect the Reproduction of the Keystone Herbivore Daphnia pulex

    Get PDF
    Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies – the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia

    The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses

    Get PDF
    Stable isotope and fatty acid analyses were used to study carbon sources for animals in a submerged plant bed. Epiphytes growing on Potamogeton perfoliatus, sand microflora, and alder leaves were the most important carbon sources. The most abundant macrophyte, P. perfoliatus was unimportant as a food source. Modelling (IsoSource) showed that epiphytes were the most important food source for the most abundant benthic invertebrates, the isopod Asellus aquaticus (annual mean contribution 64%), the amphipod Gammarus pulex (66%), and the gastropod Potamopyrgus antipodarum (83%). The mean annual contributions of sand microflora were, respectively, 21, 19, and 9%; and of alder leaves, 15, 15, and 8% for these three species. The relative importance of carbon sources varied seasonally. The relative contribution of epiphytes was lowest for all three grazer species in July: A. aquaticus 38%, G. pulex 43%, and P. antipodarum 42%. A decline in epiphyte biomass in summer may have caused this switch to less attractive food sources. P. perfoliatus provided habitat and shelter for consumers, but food was mainly supplied indirectly by providing space for attached epiphytes, which are fast-growing and provide a highly nutritious food source

    Untapped Riches of Meso-Level Applications in Multilevel Entrepreneurship Mechanisms

    Full text link

    Strong influences of larval diet history on subsequent post-settlement growth in the freshwater mollusc Dreissena polymorpha.

    No full text
    A significant seasonal variation in size at settlement has been observed in newly settled larvae of Dreissena polymorpha in Lake Constance. Diet quality, which varies temporally and spatially in freshwater habitats, has been suggested as a significant factor influencing the life history and development of freshwater invertebrates. Accordingly, experiments were conducted with field-collected larvae to test the proposal that diet quality can determine planktonic larval growth rates, size at settlement and subsequent post-metamorphic growth rates. Larvae were fed one of two diets or starved. One diet was composed of cyanobacterial cells, which are deficient in polyunsaturated fatty acids (PUFAs) and the other was a mixed diet rich in PUFAs. Freshly metamorphosed animals from the starvation treatment had a carbon content per individual 70% lower than that of larvae fed the mixed diet. This apparent exhaustion of larval internal reserves resulted in a 50% reduction of the post-metamorphic growth rates. Growth was also reduced in animals previously fed the cyanobacterial diet. Hence, low food quantity or low food quality during the larval stage of D. polymorpha, lead to irreversible effects for post-metamorphic animals and are related to inferior competitive abilities
    • …
    corecore